HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
News
Materials & Assembly

IndyCar Structure Is the Ultimate Safety Enclosure

NO RATINGS
< Previous Page 2 / 2
View Comments: Threaded|Newest First|Oldest First
NadineJ
User Rank
Platinum
great article
NadineJ   6/26/2012 11:53:04 AM
NO RATINGS
The racing industry is one of the few that seems to learn from user experience and immediately makes improvements.  Great article.

Any info on added cost or mass-market potential? 

Jerry dycus
User Rank
Gold
Re: great article
Jerry dycus   6/27/2012 2:16:08 PM
NO RATINGS
 

Nadine, you mean cars haven't improved?  Sorry but cars are lightyrs ahead of where they use to be safety wise.

Only a few composite vehicles on the road now but few can afford them as over $250k and up like Ferrari, McLaren top of the line sportcars.

My own all composite EV sportswagon design uses the same methods as F-1 uses plus many others to give excellent protection in a 235lb body/chassis, 40% of a steel car's weight with better protection in many ways, some patentable.

The main problem in the F1 design is the G forces on the body while strapped in because just not enough crush zone to lower them.

Sadly the most important safety feature they have is the seat, seatbelt which wasn't even mention. No one part makes safety as it has to be designed as a whole system.

You won't find such composite chassis  anytime soon for cars because big auto just doesn't want anything that doesn't rust away.

If they did switch to medium tech composites a SUV with them and a battery dominated hydrid drivetrain with great aero could get 50-70mpg.

NadineJ
User Rank
Platinum
Re: great article
NadineJ   6/27/2012 6:15:07 PM
NO RATINGS
Jerry dycus- I can't speak to what you're responding to because I didn't say anything about cars not improving.

I only said that the racing industry is one of the few where you can see an immediate improvement to solve a problem.

Jerry dycus
User Rank
Gold
Re: great article
Jerry dycus   6/27/2012 8:27:04 PM
NO RATINGS
 

  My point on cars was just an example of the many industries that improve quickly in safety as the article was about, not just a few as you said.

Ann R. Thryft
User Rank
Blogger
Re: great article
Ann R. Thryft   6/28/2012 1:15:48 PM
NO RATINGS
Actually, rust, as in steel, is on its way out for the big automakers. Big auto, as in GM and Ford, are partnering with carbon composite makers to fast-track the introduction of these materials into mainstream auto production.
Here's a DN article on GM's partnership with Teijin:
http://www.designnews.com/author.asp?section_id=1386&doc_id=236756
And here's one from elsewhere on Ford partnering with Dow:
http://corporate.ford.com/news-center/press-releases-detail/pr-ford-and-dow-team-up-to-bring-36330
They're also expected to use a lot more aluminum in the next few years for lightweighting:
http://www.autonews.com/apps/pbcs.dll/article?AID=/20120612/OEM01/120619972

Jerry dycus
User Rank
Gold
Re: great article
Jerry dycus   6/28/2012 2:40:21 PM
NO RATINGS
 

     Yeah, right !!! 

     It's just window dressing and doesn't include the actual body/chssis which will remain steel and the weight.  Only a few  expensive cars will have anything but steel as the major structure and that is what they want to rust away.

Notice they keep putting up CF, the most expensive, useless, least cost effective fiber around.  Why?

  I did my design  in steel, alum as a study and I couldn't get the lightweight, safety, eff and low cost out of either vs medium tech composites.

The only reason I can find is big auto just doesn't want a full composite car as it would show how bad their steel ones are.

  Same with EV's or they wouldn't have built them overweight, overpriced and overteched so they wouldn't be as cost effective as ICE's dispite their large eff, cost saving  advantage if designed correctly.

  My composite body/chassis is well under $2k each, equal or less than a steel one and mine only requires 10 units/yr to be profitable vs 50k or more for several yrs to make a steel one profitable because so expensive to set up the steel production line.

 

       

Ann R. Thryft
User Rank
Blogger
Re: great article
Ann R. Thryft   6/29/2012 12:12:09 PM
NO RATINGS
Actually, the aluminum (in the link I gave) is very much aimed at body-in-white, as that article clearly states. So is most of the composites research. Here's another, major cooperative effort that's definitely aimed at body-in-white: http://www.advanced-composites.co.uk/newsmain.html

Greg M. Jung
User Rank
Platinum
Safety
Greg M. Jung   6/26/2012 9:23:42 PM
NO RATINGS
A lot of thought and expertise went into analyzing these different failure modes and their subsequent safety countermeasures.  I also would like to see this technology find its way into the general market.

bobjengr
User Rank
Platinum
SAFETY
bobjengr   6/28/2012 8:01:12 PM
NO RATINGS
Greg, I agree completely.  What Detroit can do seems to eclipse what they want to do.   I am a firm believer in composites used as structural materials.  I also feel adhesives can and should (in some cases) replace fasteners.  I have been involved with various adhesives for some years now and find it fascinating as to their capability.   I know existing tooling is a real factor in every design decision but it seems to me safety should "rule the day" when contemplating a suitable design for automotive products.  Just a thought. 

William K.
User Rank
Platinum
Safety structure cars and Indy cars
William K.   6/30/2012 6:19:23 PM
NO RATINGS
There is a huge difference in the way cars must be designed, versus the way that Indy race cars must be done. The race cars don't need to compete pricewise, and they don't need to be styled to sell, they don't need to have multiple models, and they don't need to fill multiple needs. In addition, race cars get more maintenance in any given week than most passenger cars see in a year. 

My point is that if cost and meeting multiple needs were not considerations, passenger cars could be made a lot more like race cars. Totally different kinds of vehicles for totally different applications. You never see a "one size fits all" race car, and those highly specialized passenger cars that were mentioned all sell for prices a whole lot higher than the more common flavors.

How many different models of the composite passenger car could be made from one mold? And what would the production rate be? 

And one very important concern is that corrosion of composites is a challenge, just ask the aircraft builders. Do any of those composite race cars ever get driven in that saturated salt solution that we have for several months of every year here in Michigan?

Partner Zone
Latest Analysis
Advertised as the "Most Powerful Tablet Under $100," the Kindle Fire HD 6 was too tempting for the team at iFixit to pass up. Join us to find out if inexpensive means cheap, irreparable, or just down right economical. It's teardown time!
The first photos made with a 3D-printed telescope are here and they're not as fuzzy as you might expect. A team from the University of Sheffield beat NASA to the goal. The photos of the Moon were made with a reflecting telescope that cost the research team £100 to make (about $161 US).
At Medical Design & Manufacturing Midwest, Joe Wascow told Design News how Optimal Design prototyped a machine that captures the wing-beat of a duck.
The increased adoption of wireless technology for mission-critical applications has revved up the global market for dynamic electronic general purpose (GP) test equipment. As the link between cloud networks and devices -- smartphones, tablets, and notebooks -- results in more complex devices under test, the demand for radio frequency test equipment is starting to intensify.
Much of the research on lithium-ion batteries is focused on how to make the batteries charge more quickly and last longer than they currently do, work that would significantly improve the experience of mobile device users, as well EV and hybrid car drivers. Researchers in Singapore have come up with what seems like the best solution so far -- a battery that can recharge itself in mere minutes and has a potential lifespan of 20 years.
More:Blogs|News
Design News Webinar Series
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
9/25/2014 11:00 a.m. California / 2:00 p.m. New York
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Oct 20 - 24, How to Design & Build an Embedded Web Server: An Embedded TCP/IP Tutorial
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: 10/28-10/30 11:00 AM
Sponsored by Stratasys
Next Class: 10/28-10/30 2:00 PM
Sponsored by Gates Corporation
Next Class: 11/11-11/13 2:00 PM
Sponsored by Littelfuse
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service