HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Feature
Electronics & Test
Golden Mousetrap Awards: The Winners!
2/13/2013

< Previous   Image 12 of 21      Next >

Automation & Control:
Sensors, Vision Systems, Feedback Devices
 
Analog Devices Inc.
ADXL362 Lowest Power MEMS Accelerometer
Analog Devices introduces the industry's lowest power MEMS accelerometer, the ADXL362. The ADXL362, 3-axis, digital MEMS accelerometer operates at 300 nA in motion sensing wake-up mode, consuming 60 percent less current than the closest competing sensor in the same mode. In full measurement mode, the ADXL362 uses 2 μA at a 100 Hz data rate, using 80 percent less power than competing MEMS accelerometers operating at the same frequency. This extremely low power consumption allows the ADXL362 to be used in applications that require battery life expectancy of months or years, and where battery replacement can be impractical or dangerous to the equipment or operator. Examples include hearing aids, home healthcare devices, and motion-enabled metering or power save switches.

The ADXL362 consumes 270 nA when in motion triggered wake-up mode. Unlike accelerometers that use power duty cycling to achieve low power consumption, the ADXL362 does not alias input signals by undersampling; it samples the full bandwidth of the sensor at all data rates. The ADXL362 always provides 12-bit output resolution; 8-bit formatted data is also provided for more efficient single-byte transfers when a lower resolution is sufficient. Measurement ranges of  plus or minus 2 g,  plus or minus 4 g, and  plus or minus 8 g are available, with a resolution of 1 mg/LSB on the  plus or minus 2 g range. For applications where a noise level lower than the normal 550 μg/√Hz of the ADXL362 is desired, either of two lower noise modes (down to 175 μg/√Hz typical) can be selected at minimal increase in supply current.

Other features enabling true system level power reduction include a deep multimode output FIFO, a built-in micropower temperature sensor, and several activity detection modes including adjustable threshold sleep and wake-up operation that can run as low as 270 nA at a 6 Hz (approximate) measurement rate.

Automation & Control:

Sensors, Vision Systems, Feedback Devices


Analog Devices Inc.

ADXL362 Lowest Power MEMS Accelerometer

Analog Devices introduces the industry’s lowest power MEMS accelerometer, the ADXL362. The ADXL362, 3-axis, digital MEMS accelerometer operates at 300 nA in motion sensing wake-up mode, consuming 60 percent less current than the closest competing sensor in the same mode. In full measurement mode, the ADXL362 uses 2 μA at a 100 Hz data rate, using 80 percent less power than competing MEMS accelerometers operating at the same frequency. This extremely low power consumption allows the ADXL362 to be used in applications that require battery life expectancy of months or years, and where battery replacement can be impractical or dangerous to the equipment or operator. Examples include hearing aids, home healthcare devices, and motion-enabled metering or power save switches.

The ADXL362 consumes 270 nA when in motion triggered wake-up mode. Unlike accelerometers that use power duty cycling to achieve low power consumption, the ADXL362 does not alias input signals by undersampling; it samples the full bandwidth of the sensor at all data rates. The ADXL362 always provides 12-bit output resolution; 8-bit formatted data is also provided for more efficient single-byte transfers when a lower resolution is sufficient. Measurement ranges of ±2 g, ±4 g, and ±8 g are available, with a resolution of 1 mg/LSB on the ±2 g range. For applications where a noise level lower than the normal 550 μg/√Hz of the ADXL362 is desired, either of two lower noise modes (down to 175 μg/√Hz typical) can be selected at minimal increase in supply current.

Other features enabling true system level power reduction include a deep multimode output FIFO, a built-in micropower temperature sensor, and several activity detection modes including adjustable threshold sleep and wake-up operation that can run as low as 270 nA at a 6 Hz (approximate) measurement rate.

< Previous   Image 12 of 21      Next >

Return to Article

View Comments: Oldest First|Newest First|Threaded View
<<  <  Page 2/2
morosem
User Rank
Iron
Christian McComas
morosem   6/19/2013 8:02:12 AM
NO RATINGS
semirsom
User Rank
Iron
Re: Hearltly Congrats
semirsom   7/24/2013 10:00:46 PM
NO RATINGS
<<  <  Page 2/2
Partner Zone
Latest Analysis
Former DARPA official and Google executive Dr. Kaigham Gabriel believes sensor companies think too much like suppliers and need to bring their products closer to the consumer.
One way to keep a Formula One racing team moving at breakneck speed in the pit and at the test facility is to bring CAD drawings of the racing vehicle’s parts down to the test facility and even out to the track.
Most of us would just as soon step on a cockroach rather than study it, but that’s just what researchers at UC Berkeley did in the pursuit of building small, nimble robots suitable for disaster-recovery and search-and-rescue missions.
Engineers at Festo were inspired by how a caterpillar builds its cocoon when designing its new 3D Cocooner printer.
Design engineers need to prepare for a future in which their electronic products will use not just one or two, but possibly many user interfaces that involve touch, vision, gestures, and even eye movements.
More:Blogs|News
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7 | 8 | 9


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Course June 28-30:
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Technology Marketplace

Copyright © 2016 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service