HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
REGISTER   |   LOGIN   |   HELP
News
Materials & Assembly
Uniform Would Detect Wounds on the Battlefield
5/1/2012

The DoD is looking for a small business to design an intelligent soldier uniform that can monitor overall health and identify if and where a soldier has been wounded, among other capabilities.
The DoD is looking for a small business to design an intelligent soldier uniform that can monitor overall health and identify if and where a soldier has been wounded, among other capabilities.

Return to Article

View Comments: Oldest First|Newest First|Threaded View
Page 1/2  >  >>
Beth Stackpole
User Rank
Blogger
Smart uniforms should be a must
Beth Stackpole   5/1/2012 6:42:26 AM
NO RATINGS
It seems to me that the technology to support the application is pretty accessible. I'm actually surprised uniforms like this aren't a staple on the battlefield. Any sense as to why it's lagged behind? I would think there would be dozens of small businesses all over this opportunity to land a meaty government contract.

TJ McDermott
User Rank
Blogger
Re: Smart uniforms should be a must
TJ McDermott   5/1/2012 9:39:32 AM
NO RATINGS
One answer is power.  The uniform becomes just another device requiring power to run.  A significant percentage of the load a soldier must carry is spare batteries.  The army is currently on a push to get all the devices a soldier now carries to use a common battery size.

flared0ne
User Rank
Platinum
Should be relatively easily accomplished in stages.
flared0ne   5/1/2012 11:30:15 AM
NO RATINGS
Assume an adhoc network of minimally intelligent sensors embedded in fabric, scattered around the entire body. With some rudimentary spatial framework analysis resulting in a three-dimensional "body image", with ancillary temperature and perhaps pressure and acoustic measurements, it should be possible to map out everything happening to the uniform wearer -- from loose backpack straps and untied shoelaces down to point-of-impact for projectile wounds and, worst case, impact damage and loss of limbs, etc.

In a perfect world, that adhoc network would be able to make use of (and share) spare processing power to perform augmented intelligence tasks, acting for example as a full-body haptic interface between the wearer and a "smart phone" or equivalent, or, depending on line-of-sight and optical interface options, interfacing/coordinating between multiple individuals. I like the possibility of acoustic point-of-discharge analysis for incoming fire, too, given the virtual-sensor-array size benefit of correlating input from multiple uniforms across an area. Sharing processor power gives a whole new meaning to the phrase "All right, let's huddle up"...

It would seem that another DN post going into detail about the benefits of ultracapacitors versus batteries (re wind-farm generators) might be pertinent to the power requirements (given that you do NOT want to have to monkey with replacing sensor battery elements).

NadineJ
User Rank
Platinum
Re: Should be relatively easily accomplished in stages.
NadineJ   5/1/2012 12:15:16 PM
NO RATINGS
@flare0one: The application in the textile is easy but putting it in a functional military uniform is the challenge. 

Worldwide, uniforms have evolved to meet the needs of military personnel.  Some things can't be moved or removed because it interferes with the new technology.  The uniforms have to maintain their function under a wide range of conditions-hot, dry, wet, cold, etc.

flared0ne
User Rank
Platinum
I agree, but "flexibility" is the point...
flared0ne   5/1/2012 1:33:05 PM
NO RATINGS
I'm assuming that each sensor point would be some type of encapsulated "lump" which could reasonably be attached (encapsulated?) after the uniform itself has been fabricated. Most sensors could conceivably be general purpose, with a subset designed to be positioned adjacent to key physiological elements (heart, trachea, carotid, diaphragm, etc) and another subset (if specialization is necessary) designed to be gridded in primary haptic I/O points (gloves, forearms, thighs, chest, back, hips, etc). The majority of the volume of each "lump" would likely be made up of the encapsulant, some type of transducer (piezo? etc), the network transceiver mechanism, and the ultracapacitor energy storage element.

But the intent would be for these devices to be attached where there is space available, not to preempt priority of any existing uniform functionality (other than maybe augmenting buttons, snaps, closures, elastics (for power generation), etc). The actual encapsulated "lump" could feasibly survive environmental excursions that would exceed the limits of the wearer (and the rest of the uniform).

In the sense that design is always an iterative process, with "what we COULD do" influencing "where are we going with this", some kind of evolving specification would emerge, hopefully soon enough to prevent self-destructive "feature creep".

This is the fun part.

Rob Spiegel
User Rank
Blogger
Re: Smart uniforms should be a must
Rob Spiegel   5/1/2012 3:37:52 PM
NO RATINGS
You're right, TJ, the uniform would need a power source. But that could be taken care of by using a device that generates power. The military already has devices that attach to the boot and charge batteries through simple movement such as walking. 

TJ McDermott
User Rank
Blogger
Re: Smart uniforms should be a must
TJ McDermott   5/1/2012 4:25:02 PM
NO RATINGS
Rob, I know of the boot mechanism you describe (saw it featured either here or at Machine Design).

In Robert Heinlein's words:  There Ain't No Such Thing As A Free Lunch.  The boot mechanism uses a trooper's own energy.  That means in addition to walking, the trooper puts some effort into moving the boot mechanism.  A little extra resistance.

I don't see that particular mechanism going very far. It's too external (susceptable to damage).  Anything that would sap energy from me (extra resistance to movement) is NOT going to be greeted with enthusiasm.

Think about it.  Would you want to wear something that resists your motion after climbing Afghan mountains all day?

The soldiers of WWII frequently jettisoned their gas masks as soon as they could, calling it extra, unnecessary weight.

The better means of powering this clothing would be the cloth that uses temperature differential (outer layer to inner layer) to generate electricity  (it was featured here a month or two ago).  Combine that cloth with this technology would be a VERY smart thing.

Charles Murray
User Rank
Blogger
Re: Smart uniforms should be a must
Charles Murray   5/1/2012 7:44:41 PM
NO RATINGS
The article says that the smart uniform could "reduce the amount of time it takes to get help." Would the uniform have the ability to autonomously call for help?

flared0ne
User Rank
Platinum
"Reduce the amount of time it takes to get help"
flared0ne   5/1/2012 9:15:34 PM
NO RATINGS
Easy to hypothesize a context where having your uniform "call home" might equate to "painting a target on your position". But if you consider the benefit to a "Man Down!" of being able to pinpoint the person's location (via a low-signal-strength short-range signal)so no need to search through debris and rubble, yes, you get faster aid. And with many types of wounds, the primary immediate need is to apply pressure to the wound: the UNIFORM could handle that. Assuming some combination of contractile and inflatable fabric, the uniform could form a localized pressure pad and significantly reduce the loss of blood from a trunk wound. The same functionality would enable an intelligent "tourniquet" for wounds to extremities. These various capabilities, in conjunction with the audio capability of the distributed sensors, also enable a virtual "blood pressure cuff".

Realizable goals and constraints accumulate and evolve.

ChasChas
User Rank
Gold
false alarms
ChasChas   5/2/2012 9:25:45 AM
NO RATINGS
 

When your a medic and "Man down!", you go!  I hope there aren't too many false alarms - medics are too valuable.

 

Page 1/2  >  >>
Partner Zone
Latest Analysis
Eric Chesak created a sensor that can detect clouds, and it can also measure different sources of radiation.
Festo's BionicKangaroo combines pneumatic and electrical drive technology, plus very precise controls and condition monitoring. Like a real kangaroo, the BionicKangaroo robot harvests the kinetic energy of each takeoff and immediately uses it to power the next jump.
Practicing engineers have not heeded Yoda's words.
Design News and Digi-Key presents: Creating & Testing Your First RTOS Application Using MQX, a crash course that will look at defining a project, selecting a target processor, blocking code, defining tasks, completing code, and debugging.
Rockwell Automation recently unveiled a new safety relay that can be configured and integrated through existing software to program safety logic in devices.
More:Blogs|News
Design News Webinar Series
3/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
2/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
12/18/2013 Available On Demand
11/20/2013 Available On Demand
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 21 - 25, Creating & Testing Your First RTOS Application Using MQX
SEMESTERS: 1  |  2  |  3  |  4  |  5


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: April 29 - Day 1
Sponsored by maxon precision motors
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service