HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
News
Materials & Assembly
Composites Employed in Military Helicopters
2/17/2012

Composite structures and prepegs will help give the super-fast S-97 RAIDER demonstration helicopter strength and light weight.   (Source: Sikorsky Aircraft)
Composite structures and prepegs will help give the super-fast S-97 RAIDER demonstration helicopter strength and light weight.
(Source: Sikorsky Aircraft)

Return to Article

View Comments: Newest First|Oldest First|Threaded View
Page 1/2  >  >>
Cabe Atwell
User Rank
Blogger
Re: Composites Employed in Military Helicopters
Cabe Atwell   5/31/2014 12:25:41 AM
NO RATINGS
I'm pretty sure composites were used in the modified stealth helicopter the SEALs used to get Osama. They probably are used in conjunction with the absorbent paint most stealth aircraft employ.

Ann R. Thryft
User Rank
Blogger
Re: Composites Employed in Military Helicopters
Ann R. Thryft   2/22/2012 12:49:23 PM
NO RATINGS

Jerry, thanks for all the detailed info. It's interesting to hear about composite use for awhile in small aircraft, since the other "root" of their use has been in military aircraft going back several decades.

Re delam, Boeing is having ongoing problems with this, although they claim it's minor and won't slow production this time:

http://seattletimes.nwsource.com/html/localnews/2017459546_apusboeingoutlook1stldwritethru.html


vimalkumarp
User Rank
Gold
Composites Employed in Military Helicopters
vimalkumarp   2/22/2012 11:14:42 AM
NO RATINGS
Thanks Jerry for the wonderful analysis highlighting the use of composites.

Jerry dycus
User Rank
Gold
Re: Composites Employed in Military Helicopters
Jerry dycus   2/22/2012 9:52:16 AM
NO RATINGS
 

  Composites have already taken over the small plane and kitplane industry. Now just eating it's way up the size chain.

   A really good thing about most composites is they can be made from renewable or extremely common materials like sand and various biomass from fat to celulose with RE.

  CF was and maybe still is made from carbonized Rayon thread which is made from celulose IIRC. Most if not all plastics, resins can be made from biomass.

  With it's other advantages like lightweight, easy start up costs, doesn't oxidize and flexibility means it will be the future of transport and many things now done with metals which will become increasingly costly.

For instance starting up a Car production line in steel is about $1B vs one in Composites $10M.  Sadly if 4wheels the legal is $15M so I'll build 2 and 3wh EV subcars legally motorcycles with almost no legal costs.

vimalkumarp
User Rank
Gold
Composites Employed in Military Helicopters
vimalkumarp   2/22/2012 4:50:17 AM
NO RATINGS
This is a really a great move. With the advancements in the field of SHM ( Structural Health Monitoring) systems it is possible to explore the possiblilties hitherto a bit cumbersome.   Aircraft manufacturers are incorporating more and more composite materials into their new aircraft structures. Airbus' giant A380 is made of 25 percent composite materials, while about 50 percent of the weight of the Boeing 787 Dreamliner is composite, a dramatic increase over the approximate 12 percent used for B777.

Jerry dycus
User Rank
Gold
Re: Synergies with wind turbine blades
Jerry dycus   2/21/2012 8:53:35 PM
NO RATINGS
 

                 Hi Ann,

                          It's mostly a QC problem as Boeing had with the Italian 787 parts they just couldn't build so they had to move the factory IIRC

                            You can make very good part with CF but you need people with experience and constant QC or your reject pile becomes very costly.

                          When I'm sailing new waters I always sek out local knowledge can make the difference in a pleasent cruise or losing the boat on some uncharted rocks. Same really in most fields, real life intrudes, things one would never expect, on carefully laid plans. This is especially true with CF where experience counts.

                          Sadly too many armchair quarterbacks and few who actually make things.

   

Ann R. Thryft
User Rank
Blogger
Re: Synergies with wind turbine blades
Ann R. Thryft   2/21/2012 2:43:13 PM
NO RATINGS

Jerry, thanks for the detailed reply. It sounds like you're saying it's tough to avoid delam during the CF composite manufacturing process--or perhaps during the process of making components out of the composites?--compared to FG. It's interesting that something as simple as the presence of absence of a color change can make such a big difference! It also sounds like the specific process method for making composites can make a big difference.


Jerry dycus
User Rank
Gold
Re: Synergies with wind turbine blades
Jerry dycus   2/21/2012 2:16:08 PM
NO RATINGS
 

          Hi Ann,

                 CF is shiny black with a very high surface tension means it really doesn't like to wet out throughly and because of the color, can't tell when it is completely wet out.  With FG it is white and turns clear when fully wet out.

          Even one area like this can down a helicopter/plane or in my case million $ racing sailboats in the FasnetForce10 race in the UK losing their pricy CF rudders .

                    Which really come down to do CF corectly one needs pressure resin feed very well designed or better, pultrusion forcing an much higher CF/resin ratio be squeezing it.

                    Or prepreg is great or very labor intensive of many thin layers I normally do.

                   And 1 small slipup and the 10% advantage CF gives disappears leaving one with a 10-20x's cost underspec piece.  

                   For spars/wings, blades pultrused CF rods should take 90+% of the forces with the rest for shape, stiffness and hold the CF in columm is the lowest cost, weight, is the winning app.

                   And I just finishing details on a  contract to build Composite 2kw wind generator blades of 16' dia which in many areas will power an eff home at costs well under coal for a customer and do my own design as well.  Cost complete  is about $3k/kw installed and they should work 50 yrs.

                Customers blade like normal ones and mine is a variable pitch one without moving parts be tayloring the fibers, area, etc to make it twist as, when I want it too. This alone increases eff 25% while being lighter, easier to build.

Ann R. Thryft
User Rank
Blogger
Re: Synergies with wind turbine blades
Ann R. Thryft   2/21/2012 12:38:21 PM
NO RATINGS

Jerry, could you expand a bit on your comments regarding CF composite delam: "Delam is mostly a process/QC problem which extremely hard with CF." What's hard--having the problem in the first place? Catching it?


Jerry dycus
User Rank
Gold
Re: Synergies with wind turbine blades
Jerry dycus   2/18/2012 2:23:55 AM
NO RATINGS
 

           Finally a place where CF can earn it's keep!  The skin and core of a helicopter rotor have little bearing on it as everything almost is in the capspar or whatever they call it.  Most are made up of CF pultruded rods to take the forces.

   Heli and windgen blades have very different roles and not much in common other than materials. WG blades and aircraft wings, bodies is another story with much in common.

  Windgen and heli blade speeds are similar as both are limited by the speed of sound/drag. Also why they turn so slow rpm to keep the tips from getting close to mach1.  Otherwise higher rpm would be  much cheaper to work with.

And about time they went to twin rotors which is about 15-20% more eff/ payload plus the added speed plus more stable.

  Delam is mostly a process/QC problem which extremely hard with CF. Prepreg and pultrusion are best way to make CF work.  If you screw up just 10% then your advantage over FG is gone.

Page 1/2  >  >>
Partner Zone
Latest Analysis
Take a look at the top 20 US undergraduate engineering programs. Then tell us -- did your school make the cut?
Producing high-quality end-production metal parts with additive manufacturing for applications like aerospace and medical requires very tightly controlled processes and materials. New standards and guidelines for machines and processes, materials, and printed parts are underway from bodies such as ASTM International.
Engineers at the University of San Diego’s Jacobs School of Engineering have designed biobatteries on commercial tattoo paper, with an anode and cathode screen-printed on and modified to harvest energy from lactate in a person’s sweat.
A Silicon Valley company has made the biggest splash yet in the high-performance end of the electric car market, announcing an EV that zips from 0 to 60 mph in 3.4 seconds and costs $529,000.
The biggest robot swarm to date is made of 1,000 Kilobots, which can follow simple rules to autonomously assemble into predetermined shapes. Hardware and software are open-source.
More:Blogs|News
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 8 - 12, Get Ready for the New Internet: IPv6
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service