HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
News
Materials & Assembly

Additive Techniques Come to Low-Volume Manufacturing

NO RATINGS
< Previous Page 2 / 4 Next >
View Comments: Newest First|Oldest First|Threaded View
Page 1/2  >  >>
LarryR46
User Rank
Iron
Additive Techniques Come to Low Volume Manufacturing
LarryR46   1/10/2012 11:42:43 AM
NO RATINGS
Does it really cost "hundreds of thousands of dollars" to purchase a single rotor blade for an SH-3?

Ann R. Thryft
User Rank
Blogger
Re: additive techniques for auto parts
Ann R. Thryft   12/27/2011 12:27:37 PM
NO RATINGS

Those long lead times RadioGuy quotes for different techniques are one of the big reasons why AM looks so promising to automotive and aerospace manufacturers, among others. One of the biggest applications is for either "bridge" parts--a small run of regular parts made while waiting for the larger order that has been delayed--or for on-the-spot customized replacements, especially in aerospace, especially in remote locations.


RadioGuy
User Rank
Gold
Re: additive techniques for auto parts
RadioGuy   12/16/2011 3:20:17 PM
NO RATINGS
My knowledge of die casting comes from plastic and aluminum parts that we use for housings in our products. This parts are much easier than the auto parts which need to stand up to severe thermal and mechanical stresses (whereas our aluminum allow radio housing just need to remain waterproof from -40 degrees to +70 C). I find it interesting to learn that the actual mold used is made of plaster. Makes sense.

When we are ordering up tooling, we typically have a 12 week lead time; I was assuming that an auto engineering site would have the mill in-house and have much shorter lead times. But we are still on the right order of magnitude.

As for what process one uses for what applications: I would think that the "conventional" exhaust manifolds would be stamped/pressed/welded rather than die cast. But the stamp/press processes still require long-lead-time tooling.

I love this forum, where an old softwre guy like myself can learn a bit about mechanical engineering. It is this kind of reaching across between disciplines that helps us all innovate, because it takes a complete outsider who is not steeped in the traditions of "how these things are done" to ask "why are you doing it that was and not ... (insert alternative process here)".

Ann R. Thryft
User Rank
Blogger
Re: additive techniques for auto parts
Ann R. Thryft   12/16/2011 11:27:14 AM
NO RATINGS

RadioGuy, you're right that the Honda engine parts are cast from  molds based on a wax model. The process is a lot like the old lost-wax process. But I disagree with your fine-tuning of the definition. The industry classifies that as part of additive manufacturing. The actual parts made for production uses, such as racing car parts, are another branch of AM and are usually called direct manufacturing, meaning with no model or cast in between the CAD pattern and the output.

And Dave, thanks for all the detailed input on casting.


Ann R. Thryft
User Rank
Blogger
Re: Additive manufacturing vs. 3D printing
Ann R. Thryft   12/16/2011 11:26:30 AM
NO RATINGS


RNDDUDE, I've seen some of these custom-made dental implants and hearing aids and they are pretty amazing. What's also amazing are the customized surgical guides and other surgeon's tools that are customized to the patient's body, especially in dental surgery.



Dave Palmer
User Rank
Platinum
Re: Impressive
Dave Palmer   12/16/2011 9:27:58 AM
NO RATINGS
@Charles: Investment castings have been used in this type of stressful environment for decades.  What's new here is that the patterns for the castings are made using additive manufacturing techniques.  But the castings are still made by pouring molten metal into a mold.  

Charles Murray
User Rank
Blogger
Impressive
Charles Murray   12/15/2011 10:03:23 PM
NO RATINGS
The human body can be a pretty harsh and corrosive place for parts, but it pales by comparison to an engine's exhaust manifold. I'm very surprised to see this technology being applied to such stressful environments.

Dave Palmer
User Rank
Platinum
Re: additive techniques for auto parts
Dave Palmer   12/15/2011 7:10:08 PM
NO RATINGS
@RadioGuy: Your details are a little bit off -- $50,000 is maybe a reasonable price for die casting tooling (depending on the size and complexity of the part), but a typical tooling lead time would be more like six to eight weeks, and a typical tooling life would be several hundred thousand shots -- but your comments capture the spirit of the technology very well.

Basically, if you don't have time and/or money to spend on tooling, and if you only need a small number of parts, then it makes sense to use rapid patterns.

One consideration which isn't mentioned in the article is that casting in a plaster mold is very different from casting in a steel mold.  Plaster is a thermally insulating material, while steel is a thermally conductive material.  This means that the heat transfer at the metal-mold interface is completely different.  A casting will solidify at a much faster rate in a metal mold than in a plaster mold.  The solidification rate determines many of the mechanical properties of the casting.  So I'm not sure that this is a "realistic substitute" for die casting, at least as far as mechanical properties are concerned.

I'd like to know more about the plaster mold process mentioned in this article.  Are the plaster molds thick, or are they shells? If they are shells, do they stand alone, or do they go into a sand flask? Are the molds single-use (which would make this a form of investment casting), or can they be used multiple times?

As RadioGuy points out, in many of these technologies, additive manufacturing techniques are not used to make the final product, but to make a pattern for a casting.  As a metallurgist, I would like to see much more emphasis on the metalcasting aspects.

The fact that metalcasting has been around for thousands of years does not make it is old and boring.  Advances are constantly being made in foundry technology.  The interface between additive manufacturing and metalcasting is just one example. 

RadioGuy
User Rank
Gold
Re: additive techniques for auto parts
RadioGuy   12/15/2011 3:27:19 PM
NO RATINGS
The automotive parts (exemplified by the Honda racing engine's exhaust manifolds) are not really additive manufactoring. They are metal CASTINGS made in MOLDS based on a WAX MODEL that was sculted by a 3-D printer. This is still cheaper than a mold created from a steel block sculpted by a CMC milling machine. The trade off may be that a steel mold costs $50,000 and takes 3 weeks but is good for 1000 castings, whereas the wax / sand casting is done in a day but has to be repeated with a fresh wax model for each cast.

(I don't really know much about metal manufacturing, but I think the above captures the gross outline of the technology.)

RNDDUDE
User Rank
Platinum
Re: Additive manufacturing vs. 3D printing
RNDDUDE   12/15/2011 12:51:08 PM
NO RATINGS
Ann, yes medical has some real potential. Because now one can get very accurate patient topographical data via MRI/cat scan, and have that translated into 3D solid format, customized implants can then be exactly tailored to the patient before and surgery takes place. The result would be perfect fit, faster surgeries, less complications, faster recoveries.

Page 1/2  >  >>
Partner Zone
Latest Analysis
Take a look at the top 20 US undergraduate engineering programs. Then tell us -- did your school make the cut?
Producing high-quality end-production metal parts with additive manufacturing for applications like aerospace and medical requires very tightly controlled processes and materials. New standards and guidelines for machines and processes, materials, and printed parts are underway from bodies such as ASTM International.
Engineers at the University of San Diego’s Jacobs School of Engineering have designed biobatteries on commercial tattoo paper, with an anode and cathode screen-printed on and modified to harvest energy from lactate in a person’s sweat.
A Silicon Valley company has made the biggest splash yet in the high-performance end of the electric car market, announcing an EV that zips from 0 to 60 mph in 3.4 seconds and costs $529,000.
The biggest robot swarm to date is made of 1,000 Kilobots, which can follow simple rules to autonomously assemble into predetermined shapes. Hardware and software are open-source.
More:Blogs|News
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 8 - 12, Get Ready for the New Internet: IPv6
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service