HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
REGISTER   |   LOGIN   |   HELP
News
Materials & Assembly

Aerospace Composites Expert Looks Ahead

NO RATINGS
Page 1 / 2 Next >
View Comments: Oldest First|Newest First|Threaded View
Page 1/2  >  >>
Beth Stackpole
User Rank
Blogger
New PLM capabilities may help optimize processes
Beth Stackpole   11/23/2011 6:34:36 AM
NO RATINGS
One development that could have a really positive effect on optimizing the design, manufacture, and maintenance of composite components on aircraft or marine applications is the fact that the major PLM vendors have begun to build out composite capabilities as part of their core platforms. Dassault has been very aggressive on that front, and Siemens PLM Software recently acquired Vistagy, a major player in the niche market of simulation, development, and process tools for optimizing composite design and manufacturability. These tools can help automate some of the traditional manual and time consuming parts of the composite development process and integrate this key aspect as part of a broader multidisciplinary development effort.

Alexander Wolfe
User Rank
Blogger
Fiberglass versus composites
Alexander Wolfe   11/23/2011 7:50:26 AM
NO RATINGS
I'm wondering if the rise of composites is going to eventually relegate Fiberglass to the slag heap. The latter has seen service for years in cars -- most notably the Chevy Corvette -- and boats. I'm assuming it remains much cheaper than composites. However, working with Fiberglass is messy (and dangerous in its own way, as far as inhalation is concerned). Perhaps at some point as composites become easier to work with, there will be some kind of crossover and composites will displace fiberglass. OTOH, I'm betting fiberglass will remain significantly cheaper for the foreseeable future.

Ann R. Thryft
User Rank
Blogger
Re: Fiberglass versus composites
Ann R. Thryft   11/23/2011 11:56:23 AM
NO RATINGS

Fiberglas is often mentioned as one of the major materials composites are competing against for light weight in aircraft and automobiles, although technically speaking, fiberglass is itself an early composite material. Since the two main composite fiber (versus matrix) materials for use in these applications are glass fiber and carbon fiber, composites based on those have to come down in price to meet cost goals. You're right, Alex, fiberglass will probably remain cheaper for some time to come. The main advantage composites, especially carbon fiber ones, have over fiberglass now is strength and rigidity.

And to Beth's point, that's exciting news. Composites manufacturing in the past has been a lengthy, complicated process.


Dave Palmer
User Rank
Platinum
Re: Fiberglass versus composites
Dave Palmer   11/23/2011 1:08:47 PM
NO RATINGS
@Alexander: As Ann points out, fiberglass is a composite.  When you say "composites will displace fiberglass," I assume you mean that other composites will displace fiberglass - presumably, composites with other types of reinforcements, such as carbon fiber.  But as the article points out, carbon fiber has been around for a long time, too.  And glass fiber reinforced composite technology has not stood still, either.  Visit Cytec's website, and you will see that many of the advanced composites they have developed are glass fiber reinforced.

If it were really a case of glass versus carbon, with one inevitably triumphing while the other is relegated to the "slag heap" - isn't a metallurgical metaphor a little out of place here? - then you'd think this would have happened 30 years ago, wouldn't you?

But, for the most part, this is not how things work in the world of materials.  Around three thousand years ago, tools made out of iron and steel began to replace tools made out of bronze - but we still use bronze for all kinds of things.  Similarly, glass and carbon fibers (and other kinds of reinforcements!) will find their appropriate places in different applications.

Some of the biggest advances, as you allude to, have been in composite manufacturing techniques.  For example, labor-intensive hand layup (which is probably what you're thinking of when you say "fiberglass is messy"!) has largely been replaced by the use of prepreg systems.

 

Jerry dycus
User Rank
Gold
Re: Fiberglass versus composites
Jerry dycus   11/23/2011 1:16:25 PM
NO RATINGS
 

  It depends on the part but FG is 10% of the price of CF for a whole 10% weight savings!!  And if it's made from woven CF cloth it's not even as good as FG.

So other than aircraft where CF is worth it some of the time, FG, Kevlar like fibers will rule.

Far more important is design to make the best use of materials. 

In the future materials, especially metals, oil, will be much higher cost because of the huge demand of 3billion 3rd world peoples becoming first world. 

 In such a place we are heading fast being able to make FG from sand and solar thermal means it will stay a low cost material for building many things from transport, homes, etc. And the resin can easily be made from biomass as much of it is presently done in epoxies.

Now add composites don't rust, low cost composites have a bright future.  Especially if we can get Detroit, etc to make unibody cars, trucks from it, cutting weight by 40%.

Ann R. Thryft
User Rank
Blogger
Re: Fiberglass versus composites
Ann R. Thryft   11/28/2011 12:27:05 PM
NO RATINGS

To clarify, fiberglass is only one class of glass-fiber reinforced composites. I think the point the article was making was that, specifically for aerospace, non-fiberglass composites, especially carbon fiber based ones, are superior in performance, albeit more expensive. In aircraft, automobiles, and boats, the question is whether a material can be used in a primary or secondary structure. 


Alexander Wolfe
User Rank
Blogger
Re: Fiberglass versus composites
Alexander Wolfe   11/28/2011 2:19:17 PM
NO RATINGS
Thanks for the update, Ann. So are carbon-based composites as messy to manufacture as I've long assumed them to be, mainly from what I've seen on Discovery-channel-like cable shows. Seems like it's labor intensive and messy -- almost like working with Fiberglass, but on steroids. Is that truly the case or is there an automation aspect to the manufacturing process that I'm missing?

ScotCan
User Rank
Platinum
Design and Simulation Tools OK for Theory but not for Manufacture
ScotCan   11/28/2011 4:11:24 PM
NO RATINGS
The general problem in composite use in aircraft is nonconformance during manufacturing and none of the tools mentioned during the design and simulation stages can predict what goes on. Carbon fibre laminating is a complex business affected by such things as humidity, cure cycle times, resin fluctuations etc. Liaison Engineering can fix aluminum structures and bring them back to the design intent using a number of ingenious solutions it's not so straightforward with composites. ARALL and GLARE (hybrids) are closer to traditional aluminum construction where repair procedures are concerned. Carbon fibre/honeycomb construction has failed explosively in the case of AirBus Rudders and Canadian tests on similar construction with undetected local delaminations cycled from sea level to altitude caused double the delamination in an explosive fashion. The consensus was that the rudder explosively delaminated (the pilots heard a bang from the rear of the aircraft), the rudder lost its structural stiffness and began to break up separating from the fin. The aircraft went into a series of Dutch Rolls and was only brought under control by reducing altitude into denser air. A pressurized fuselage if fabricated from the same construction would be disastrous since passenger cabin depressurization would injure people.

Dave Palmer
User Rank
Platinum
Re: Fiberglass versus composites
Dave Palmer   11/28/2011 4:19:34 PM
NO RATINGS
From google.com, "fiberglass definition":

fi·ber·glass/ˈfībərˌglas/

Noun:
  1. A reinforced plastic material composed of glass fibers embedded in a resin matrix.

So the term "fiberglass" actually refers to all glass-fiber reinforced polymer matrix composites, not just a class of them.

Now that we've got that cleared up - the article actually discusses automated layup of composites.  Manual layup is still quite common, but CNC is making inroads.  For example, this article from Composites World discusses automation of composite wind turbine blade manufacturing.  The article notes that many of the techniques described have already been in use for some time in the aerospace industry.  

Dave Palmer
User Rank
Platinum
Re: Design and Simulation Tools OK for Theory but not for Manufacture
Dave Palmer   11/28/2011 4:35:22 PM
NO RATINGS
@ScotCan: I think you've hit the nail on the head.  Manufacturing defects are just one of the issues you encounter when you move from the computer screen into the real world.  Hopefully, some of the automated manufacturing techniques discussed in the article can help with this - but this is why structural health monitoring (which is being discussed in another thread) is such a hot topic.

Your point about maintenance crews being familiar with repair methods for aluminum but not for composites echoes the findings of a recent U.S. Government Accountability Office report, which has also been discussed here.

Page 1/2  >  >>
Partner Zone
Latest Analysis
Lumus and eyeSight have partnered to create consumer-grade devices that offer all the prime functions of smart glasses without the bulk.
VisLab joins the autonomous car effort with the DEEVA prototype.
NASA and Boeing developed a huge, carbon composite cryogenic fuel tank for deep space missions, and started testing it last month. The 18-ft cryotank will enable heavy-lift launch vehicles to send both humans and robots into deep space.
Focus on Fundamentals -- a new Design News webinar series -- kicks off April 29 with How to Select Drives for Robotics Applications. Don't miss it!
Research and other advancements in the realms of robotics, diagnostic and treatment devices, nanotechnology, and medical implants may one day make humans superior versions of their natural selves.
More:Blogs|News
Design News Webinar Series
3/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
2/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
12/18/2013 Available On Demand
11/20/2013 Available On Demand
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 21 - 25, Creating & Testing Your First RTOS Application Using MQX
SEMESTERS: 1  |  2  |  3  |  4  |  5


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: April 29 - Day 1
Sponsored by maxon precision motors
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service