One
of the most common questions asked when setting up a new closedloop motion
control system is, "What gains should be used for the control loop parameters?"
One way to get to the answer is to contact the motion control company for
technical support. However, the person asking for help may not realize the
person providing technical support cannot help without knowing important
details about the system being tuned. Because of this, designers often resort
to determining the gains for the PID (proportional, integral and differential)
components of the control loop equation using trialanderror methods. This can
be very wasteful in both time and performance.
Fortunately,
technologies are available for closedloop tuning for applications that handle
position, speed and pressure or force control using models that are developed
by analyzing the operation of existing systems. As a result, it is possible to
compute the gain, natural frequency and estimate a damping factor for a
welldesigned hydraulic system by measuring how the system responds to
stimulus. Once the system model is known it is easy to calculate the controller
gains and feed forwards that should be used. Even if the model is off by 10
percent the controller gains that the model generates will provide a good,
practical start that requires only minor adjustments.
Auto Tuning Explained
Auto
tuning software computes the coefficients for a system model by finding what
coefficient values minimize the error between the actual response of a system
and the model's predicted response. Usually auto tuning software is written to
tune a particular type of system where the form of the model is already known
or assumed. In these cases, the software simply finds the coefficients for that
model. Therefore, if the system being tuned does not fit one of the models
preprogrammed into the auto tuning software, the software will not work
correctly. For example, the operation of a process control system designed for
temperature control is usually assumed to be modeled by a first or
secondorder differential equation plus dead time. This type of model is quite
different from a model for an underdamped hydraulic position control system.
Auto
tuning requires that the system be excited by varying the control output to the
system. Some auto tuning systems simply use a step change in the control output
and some use pulses. The control signal must make some transitions between
different levels and also provide time for the system's response to the
excitation to stabilize at the new level. The response of the system to the
control stimulus will provide information about the time constants of the
system and the steady state conditions.
Auto
tuning systems differ in how much data is collected and how that data is used. For
example, some motion control systems generate a pulse and record the maximum
speed reached by the motion axis and how long it takes for the axis to coast
down to zero speed. From this data, it is easy to calculate a time constant
from the ramp down time and the gain(s) can be calculated by using axis speed
and the pulse time compared to how fast the axis would have been going if it
were allowed to continue for 5 time constants. This method is easy but not very
robust since it relies heavily on just a few readings and only supports
firstorder models (i.e. models that can be expressed by linear equations).
More
sophisticated auto tuning systems can excite the system in a number of ways and
the excitation does not need to be a pulse or a step change. In these cases, a
difference equation or differential equation is used to estimate the process
using the control output and assumed values in the equation that represent the
system gain, offset and time constants. The first estimation is usually not
very good but there are software algorithms such as LevenbergMarquardt and
LBFGS that can find values for the difference or differential equation that
minimize the sum of squared errors or the norm between the recorded process
variable and the estimated variable for each time period. After a hundred
iterations or more, the best plant gain, offset and time constant are found for
that model only. At this point it is possible to repeat the process using a
different model in an attempt to try to reduce the sum of square error between
estimated and actual process variables.
Click here for larger image.

The
graph in Figure 1 shows how the LevenbergMarquardt algorithm enables finding
the system model even when the feedback data is noisy or the system has low
resolution feedback. Auto tuning systems that rely on just a few points will
probably fail to calculate good gains in these high noise and low resolution
systems. Auto tuning software that minimizes the error between the estimated
data from the model and the actual data from the feedback during every sample
period will provide much better gains.
Why Auto Tuning Doesn't
Always WorkThe
main reason an auto tuning software package would fail to deliver is when that
auto tuning software doesn't include a model that matches the real system under
consideration. To understand the differences between system models, consider
different system types:

Integrating and nonintegrating
systems. With
integrating systems, the process variable stays where it is when the control
output stops as long as there isn't an outside disturbance. Position actuators
or tank level control valves or pumps are examples of integrating systems. A
position actuator will stop when it reaches a target position and a tank is
obviously an integrator of net flow, which maintains its level when its target
level is reached.
With
nonintegrating systems, the process variable will settle back to an ambient
state. For instance, a temperature system will cool off or warm up to ambient
temperature when heating or cooling is not longer applied. A velocity control
system is also nonintegrating because the moving axis will coast to a stop
when the motive force is removed.
An
auto tuner that works for nonintegrating processes will not work for
integrating processes and vice versa.

Dominant one or twopole systems. Many systems are simple and can
be approximated by singlepole or twopole models that have time constants. It
is best if the auto tuning software can support both single and double pole
models, but the errors will probably not be big if the double pole model isn't
supported. Using a FOPDT (firstorderplusdeadtime) model for a SOPDT
(secondorderplusdeadtime) system may work if one of the time constants is
short compared to the other.

Nonlinear systems. Modeling nonlinear systems using
linear models is virtually impossible. Even if these systems can be correctly
modeled by the auto tuning software, it is doubtful that the information will
prove useful without extra programming in the controller to adjust the control
loop gains as a function of the process variable. As soon as custom programming
is employed, the model becomes applicationspecific and may not be applicable
to other control situations. Therefore, many auto tuning systems don't support
nonlinear models and auto tuning programs support only one model. And if the
system being tuned doesn't match one of the models, the auto tuning simply will
not work well or work at all.
Hydraulic System
Application
An
auto tuning paradox is that linear systems are usually easily tuned either
manually or automatically. Therefore, the engineer can simplify the tuning
process by designing the machinery to be as linear as possible. When this is
not possible, the system may be approximated by dividing the motion travel into
linear segments. The segments should be small enough so that the auto tuning
software can easily find a linear approximation for each segment.
Click here for larger image.

For
a simple example of a system where using multiple gain segments can provide
better response, consider the dualgain system referenced in Figures 2 and 3. The
hydraulic system being tuned contains a dualgain valve. Dualgain valves are
useful to provide responsive control over a wide range of velocities (lower
gain when motion is slower, higher gain in order to respond quickly when the
axis is moving more quickly). Different gains may also apply to different
ranges of position (consider what is required to move a linear hydraulic axis
in an arcing profile).
In
the valve referenced in Figures 2 and 3, the low gain portion of the valve
responds to voltage inputs between zero and approximately 4.47V where the low gain
translates to moving the
hydraulic actuator at
Click here for larger image.

about 1.07 inches per sec per
volt. The high gain section goes from 4.47 to 10V and the gain in this section
is 7.61 inches per sec per volt. (Note that the valve manufacturer's specifications
don't provide this information).
In
the case of Figure 2, the auto tuning software was used to generate the gains
for the two valve segments separately, and the profile of the actual versus
target axis velocities match very closely.
The
analysis shown in Figure 3 uses the same auto tuning approach but without the
dual gain model. The auto tuning software can only estimate an average gain
over the whole range of control outputs. There are large errors between this
model's estimated velocity and the actual velocity. If gain scheduling (i.e.,
the use of different gains at different times) is not used, the gains
calculated from this model may be the best choice, but for higher performance
and precision systems the dual gain model will be much more accurate.