CAD/CAM Corner
Formlabs Launches 'Prosumer' 3D Printer

Image 1 of 6      Next >

The Form 1 is designed to be an 'end-to-end' 3D printer package that individuals can afford. (Source: Formlabs)
The Form 1 is designed to be an "end-to-end" 3D printer package that individuals can afford.
(Source: Formlabs)

Image 1 of 6      Next >

Return to Article

View Comments: Oldest First|Newest First|Threaded View
<<  <  Page 2/3  >  >>
User Rank
Only One of the Needed Processes
BobbleHead   10/5/2012 11:46:55 AM
There are several additive fabrication processes and printer models within those process categories.

STL (stereo lithography) often results in a much higher-resolution part in a weaker material.

It is no competition for laser or electron beam sintering of titanium, or even nylon powders, for part strength.

Its output is single-material/color.

As with all STL printers, models must be designed to facilitate draining and cleaning off the unpolymerized resin.

It is a 'wet' process with post-processing/cleanup/disposal required.

Monomer resins are fairly reactive and often allergenic.

The possible presence of metals as catalysts must be considered.

This product is not a 'killer', since it can only cover a limited sector of the additive fabrication industry.

Don't be drawn in by such exhortations as 'now overhangs can be printed' - this capability has been around in 3D printing processes for a long time.

But it LOOKS capable and well-integrated within its niche.

I would place its output mostly in the 'display model', 'molding form', and 'functional modeling' target areas.

In my prototyping and short production run work I use FDM (fused deposition modeling) parts straight out of the printer with practically no post-processing required.  These are around 80% as strong as injection-molded ABS parts, but they don't have the resolution and finish that STL can produce.

Different needs, different capabilities.

Beth Stackpole
User Rank
Re: Only One of the Needed Processes
Beth Stackpole   10/5/2012 12:57:51 PM
@Bobblehead: Thanks for the very informative response. Would the Form1 or any of these lower cost 3D printers be something you might consider investing in for home use or for workshop use? I'd say given your experience with additive manufacturing and 3D printing on the job, you are one of their target customers!

User Rank
Re: 3d printing
SparkyWatt   10/5/2012 1:53:58 PM
The other difference is model strength.  A 3D printer only makes a model that looks good.  Rapid prototyping systems make parts that are comparable in strength and finish to injection molded parts.  Rapid Prototyping systems are typically more expensive because the processes that can provide that strength are limited.

I have even heard of a RP system that laser sinters powdered metal to give you metal parts.

Stereolithography has been around for a long time, and yields some of the prettiest results in 3D printing, and some of the fastest 3D printers are based around it.  It is done with a UV cured resin.  The original stereolith printers scanned a pool of resin with a laser.  More recent ones use a tray of resin with an electronically gated light source below.  They are fast because they can do a layer in a few seconds.  The resulting models are typically brittle.

I wouldn't recommend using these things in leiu of stock, though.  Building parts at a rate of a half millimeter every few seconds means that even a small part takes the better part of an hour to make.  They do make great demonstration pieces and "see if it fits" prototypes.  And there is a small scale production process that uses 3d printed models to make molds for production parts.

What I would like to see is a fast system that makes parts out of a reusable medium, like wax.  Then you could simply feed your failed prototypes back into the system.  If it were similar to wax, it could also be used for "lost wax" casting of real parts.

Ralphy Boy
User Rank
Re: Star Trek
Ralphy Boy   10/5/2012 4:17:36 PM

Naperlou... this tech will in my mind be one of he must haves for human conquest of the solar system. A few pounds of each rubber, plastic, metal... whatever, and the repair/replacement part inventory becomes much smaller. Plus with a bit more planning the parts being replaced might be recycled into the printing supply stream. And that is very Greenish Star Trek   

Formlabs sems to be kicking some Kickstarter you know what. It set a funding goal of $100,000 and a deadline of Oct. 26. The Form 1 has already gotten 942 backers, who have pledged a whopping $1.3 million and change to help this 3D printer see the light of day.

I wonder what they'll do with the overage in donations. 5 minutes research into group funding shows that there are good and bad players in that arena... Kickstarter rates low in accountability and in general... here

On the other hand... I have a ton of ideas that could use a little seed money ; )

Charles Murray
User Rank
Re: Only One of the Needed Processes
Charles Murray   10/5/2012 5:55:40 PM
Thanks for the information, Bobblehead. Does stereolithography see much use in today's 3D printing market. Seems to me it was a big deal a decade ago, and then we didn't hear much about it.

User Rank
Re: Only One of the Needed Processes
BobbleHead   10/5/2012 9:28:29 PM
Beth, Charles, there's a LOT more to additive manufacturing processes than I mentioned or know.

Wax model printing for lost-wax investment casting has been used in the jewelry and dental industries for years, but we don't hear much about them, either.

Stereolithography is still in significant usage, to the point that resin suppliers are offering their own resin systems for STL with many and widely varied properties targeting the differing needs of fabricators.

I am not an expert in the diverse additive manufacturing arena, though, and can't offer any numbers to nail down my perceptions.

I think news about STL may have been eclipsed by the 'gee-whiz' factor and vigorous promotion inherent in the Maker community surrounding FDM and the interesting press it can generate, along with the realization that 'every home can have one'.

Perhaps the expiration of some of Scott Crump's FDM-related patents created a feeling that it and similar technologies are now fair commercial game.

But the origins of the Fab@Home and RepRap projects seem to have preceded any 20-year limit on those 1989 patents, so it's not solely a matter of 'locked-up' IP, if at all.  I think the Fab@Home effort began with two-part or non-thermal deposition extruders, so they would probably not have fallen under those particular patent strictures.

If I were targeting a model-making capability for casting in larger quantities, then, yes, I'd look very closely at Form1 and some of the DIY STL projects currently out there.

Note that Form1 is not the first Kickstarter STL project, e.g., http://www.kickstarter.com/projects/b9creations/b9creator-a-high-resolution-3d-printer - it would be a candidate, too.

And there are DIY laser sintering projects running now, too ...

A very active arena holding much promise for rapid development and fun, with the added benefit of useful production for many purposes.

Not every home is going to have an additive manufacturing unit, of whatever kind, just as not every home has a snow cone maker.

But they could, in both cases.

User Rank
Re: Only One of the Needed Processes
solarsculptor   10/6/2012 4:25:16 PM
Having worked with stereolithography from when it was in its infancy, it is crap compared to todays additive processes. The machines are expensive to maintain, the consumables are expensive and the final output is only suitable for basic visual dimensional purposes as it has poor mechanical properties. Most of the models I worked with had to be recast in rubber molds and other materials in order to test designs as prototypes. I can give you a list of modelmaking companies that invested in the early machines and went broke.

Additive processes allow a wide choice of materials that can have almost the same mechanical properties as injection molded parts. This allows you to make a gear box or a snap fit part in one step. You can even make rubber parts and introduce colors.

User Rank
For what it's for... amazing.
clay_cowgill   10/6/2012 5:04:13 PM
There seems to be a lot of confusion about the use of SLA here...  SLA is used (heavily still) for form/fit/visulization type models where precision is important.  A good example is prototyping parts that will ultimately be made with injection molding.  FDM is laughable for that application most of the time-- the precision just isn't there.  SLA is perfectly suitable for high precision parts (like snap-fit enclosures, or tight tolerances such as moving buttons, fitting an 'enclosure' to a touch-screen, etc.) where 10/1000ths makes a big difference.

It's also worth noting that this looks *cheap* if you're used to paying for high precision prototypes.  Just to have a part made from the usual service outlets can run ~$50-1000 depending on size/volume/complexity/leadtime.  Even a "cheap" service (like Shapeways) would cost me ~$200 with a 10 day leadtime to prototype the plastics for a hand-held device.  Even if the material costs only saved me 50%, the time savings are considerable when you can do it at your desk.  I could see the unit paying for itself in ~15-30 prints depending on who you usually use.  (For example, a "next day" turn of a complex part could easily run $1K from a shop that specializes in such things-- even if the material cost was $150, same-day delivery from a printer on my desk would be a huge win and the printer would literally be 'free' from cost savings if I needed to do a few of those every year.)

For small run production, I could also see using an affordable SLA to make a master part and then make silicone molds to produce multiple urethane plastic copies for certain applications.  ...and of course there's always just the appeal of being able to thoroughly test multiple iterations of a part before comitting to cutting steel for injection molded parts too. When every test costs $1K you have to think really hard on it, if I can run a test part same-day for $100, I'm sold...

I'm seriously considering getting in on one on Kickstarter now, even though I'm not a "high volume" prototype user.  I suspect that it'll be one of those things that once you have the capability in house you'll find more and more uses for it all the time.

User Rank
Re: 3d printing
jainirrigation   10/8/2012 8:27:46 AM
thank u beth for the reply. i have gone through some articles in the internet and seen the same differences. i am really curious to know the "exact difference" between the two. i mean how come one is so expensive and bulky and other one is cheap and handy?? there must be some difference,  i mean in tearms of design, accuracy or even functionlity wise.

Beth Stackpole
User Rank
Re: Only One of the Needed Processes
Beth Stackpole   10/9/2012 7:06:17 AM
Again, Bobblehead: Appreciate all your perspective. This is a rapidly growing and changing market. It's true that a lot of the technology has been around and refined over the last two decades and perhaps it's more "news" and interesting from an innovation standpoint to those of us that have not been watching it as closely up until recently. I do think your analogy to the snow cone maker is interesting. I too, don't expect that every home will have a 3D printer (of whatever technology), but increasingly, many more will. Especially those early technology adopters, gadget enthusiasts, hobbyists, and work-at-home engineers who nearly always take part in embracing technology in the early cycles. Definitely an exciting time to be following this category.

<<  <  Page 2/3  >  >>
Partner Zone
More Blogs from CAD/CAM Corner
Virtual Reality (VR) headsets are getting ready to explode onto the market and it appears all the heavy tech companies are trying to out-develop one another with better features than their competition. Fledgling start-up Vrvana has joined the fray.
A Tokyo company, Miraisens Inc., has unveiled a device that allows users to move virtual 3D objects around and "feel" them via a vibration sensor. The device has many applications within the gaming, medical, and 3D-printing industries.
While every company might have their own solution for PLM, Aras Innovator 10 intends to make PLM easier for all company sizes through its customization. The program is also not resource intensive, which allows it to be appropriated for any use. Some have even linked it to the Raspberry Pi.
solidThinking updated its Inspire program with a multitude of features to expedite the conception and prototype process. The latest version lets users blend design with engineering and manufacturing constraints to produce the cheapest, most efficient design before production.
XYZ, Rabbit, and Disney innovate on the 3d printer in different ways -- from price point to using materials such as yarn.
Design News Webinar Series
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
9/25/2014 11:00 a.m. California / 2:00 p.m. New York
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Oct 20 - 24, How to Design & Build an Embedded Web Server: An Embedded TCP/IP Tutorial
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6

Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: 10/28-10/30 11:00 AM
Sponsored by Stratasys
Next Class: 10/28-10/30 2:00 PM
Sponsored by Gates Corporation
Next Class: 11/11-11/13 2:00 PM
Sponsored by Littelfuse
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service