HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
REGISTER   |   LOGIN   |   HELP
Blogs
Engineering Materials

Aluminum Composite to Lower Weight in Brake Rotor

NO RATINGS
Page 1 / 2 Next >
View Comments: Oldest First|Newest First|Threaded View
<<  <  Page 3/3
Jerry dycus
User Rank
Gold
Re: Heat Vs. Stoppability
Jerry dycus   2/16/2012 9:21:44 PM
NO RATINGS
 
Re: Heat Vs. Stoppability
Charles Murray  
2/16/2012 8:38:22 PM
If the automakers aren't taking a hard look at this, I'd be shocked. Cutting 30 lbs from the weight of a mid-size sedan is a gigantic change. Engineers typically fight to cut a pound or two from their vehicles. If they can cut 10 lbs, they're heroic. Thirty is off the scales.


-----------  Sadly this same way of thinking is why they went bankrupt.

------------  We have cost effective composite tech that can drop most car, SUV's weight by 50% and double their mileage.  And they know it as they all have built them as showcars like the GM UltraLite.   And yet they drool over a few pound savings.  Not much critical thinking there.

 

John
User Rank
Gold
Re: Heat Vs. Stoppability
John   2/17/2012 8:48:54 AM
NO RATINGS
I knew a brake job was due a while back and did a little searching as to what race cars use.  I knew they would completely fry a steel rotor and formula 1 would melt it.  Unfortunatly these seem to be custom built.  The only thing I think might be keeping them out of non racing cars is that they don't stop that all that well when braking from low speeds.

grand
User Rank
Iron
Aluminum is not so hot
grand   2/27/2012 10:35:53 AM
NO RATINGS
I've used aluminum rotors on a race car. I won't ever do it again. The coefficient of thermal expansion is much greater than steel. This means that the rotor heats up and grows, diminishing the clearance between the rotor and caliper until the rotor actually grinds against the caliper (I know, I know... you can always design it with more clearance to compensate. But it is not a drop in replacement at that point). Secondly, Aluminum gets really weak as it gets hot and will fall apart under high mechanical and thermal load. This is exactly what happened to me (lots of little melted aluminum chunks all over the track and my car). Steel, titanium and Carbon can glow red hot and still function as a brake rotor, Aluminum can not.

Carbon is interesting, ridiculously light. Coefficient of friction increases with temperature (this also means that cold brakes are slippery). The processing time is very long (days) see http://www.youtube.com/watch?v=LrhVHA-3ZBU. Another article http://www.f1technical.net/articles/2.

 

 

Ann R. Thryft
User Rank
Blogger
Re: Aluminum is not so hot
Ann R. Thryft   2/27/2012 1:23:16 PM
NO RATINGS

grand, thanks for your comments. This is not aluminum but an aluminum composite. That fact, plus the fact that the composite includes ceramic, makes me wonder whether one of the reasons for the ceramic is to lower heat, especially since the company developing the material has experience making similar composites for NASA for extreme temperature apps, as they describe here

http://www.relinc.net/AdvancedMaterials/MMC/lightweight_matrix_brakes.php?page=1

and here

http://www.relinc.net/AdvancedMaterials/Ceramics/NASATiles.php?page=1


grand
User Rank
Iron
Re: Aluminum is not so hot
grand   2/27/2012 3:59:08 PM
NO RATINGS
Ann, I understand that this is Aluminum Composite but that doesn't change the aluminum part very much. This company's own website http://www.relinc.net/Attachments/MotorcycleBrake.pdf states that the brakes can NOT run as hot as a steel rotor.

Materials Primer - Melting Points:

2024 Aluminum - 502C

4130 Steel - 1432C

6Al4V Titanium - 1604C

Obviously we don't run these things right up to the melting point, but this gives us a clear view of how much heat we can dissipate from a material. If I can run a material 3 times hotter, I can make it 3 times smaller.

Ann R. Thryft
User Rank
Blogger
Re: Aluminum is not so hot
Ann R. Thryft   2/28/2012 1:09:49 PM
NO RATINGS

grand, I'm aware of the fact that this stuff doesn't run as hot as steel, but wanted to make sure you knew it was a composite. The main benefit the research is aimed at here is reducing weight, not size. I'm not surprised to hear that aluminum can be a problem in race cars. The vehicles this material targets are consumer cars and military transport vehicles.


info@litebrake.com
User Rank
Iron
Re: Aluminum is not so hot
info@litebrake.com   12/28/2012 11:02:13 PM
NO RATINGS
LiteBrake Tech has developed the steel clad aluminum brake technology to deal with the "hot" problem. You may visit litebrake.com for more inf.

Marvin McConoughey
User Rank
Iron
automobile weight reduction
Marvin McConoughey   2/5/2013 11:45:30 AM
NO RATINGS
Reducing car weight is more difficult than it looks.  Lighter materials of the same strength are usually more costly.  Brake disks are an example where several lighter materials exist, but each currently comes with negatives.  Cost for some, limited max temperatures for others.  Downsizing is possible and is currently being done, but many buyers stubbornly insist on being able to carry a family in comfort.  The best approach seems to be a holistic approach, which is well underway.  This, too, is costly, requiring a coordinated design, development, and manufacturing effort with technical support from suppliers.  Those efforts are some of the reasons that car weight is not dramatically falling.  But progress, though slow, is continuing and new cars now weigh considerably less than some of their forebearers.

<<  <  Page 3/3
Partner Zone
More Blogs from Engineering Materials
3D printing has met up with drones in a 3D-printed UAV. University of Sheffield engineers printed the prototype drone in 24 hours from ABS plastic using Fused Deposition Modeling.
Some of the biggest self-assembled building blocks and structures made from engineered DNA have been developed by researchers at Harvard's Wyss Institute. The largest, a hexagonal prism, is one-tenth the size of an average bacterium.
Arevo Labs' end-production 3D printing technology for carbon composites includes a high-temperature, filament fusion printer head design and firmware for use with the company's new carbon fiber and nanotube reinforced high-temperature matrix polymers like PEEK.
Stratasys will buy Solid Concepts and Harvest Technologies and combine them with its RedEye service business. The plan takes aim at end-production manufacturing and will create one of the biggest commercial 3D printing and AM service bureaus.
The International Federation of Robotics reports that global sales of industrial robots decreased by 4% in 2012 over 2011. The biggest hit was electrical/electronics manufacturing, down by 13%; but by region, the Amerficas did well.
Design News Webinar Series
3/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
2/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
12/18/2013 Available On Demand
11/20/2013 Available On Demand
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 21 - 25, Creating & Testing Your First RTOS Application Using MQX
SEMESTERS: 1  |  2  |  3  |  4  |  5


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: April 29 - Day 1
Sponsored by maxon precision motors
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service