HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials

Metals Still Rule in Lightweighting

NO RATINGS
1 saves
< Previous Page 2 / 2
View Comments: Oldest First|Newest First|Threaded View
Page 1/2  >  >>
Rob Spiegel
User Rank
Blogger
Legacy materials fight back
Rob Spiegel   6/6/2012 9:17:56 AM
NO RATINGS
It has been interesting to see steel fight back against new materials. Legacy materials and systems benefit from technology as well as new materials. Another example is the internal combustion engine. It may get so efficient that it edges out hybrids and EVs for consumers wanting to go green.

Dave Palmer
User Rank
Platinum
Thank you
Dave Palmer   6/6/2012 11:18:40 AM
NO RATINGS
@Ann: Thank you, thank you, thank you for this article.  There are some people who think that "lightweighting" means "make it out of plastic." This tends to go hand in hand with an idea that aluminum and steel are "old materials," while plastics and composites are "new materials."

The fact is that aluminum and steel technologies are hardly standing still.  If you want evidence, just look at the new carburizing steels which QuesTek has developed.  These alloys were developed from the ground up, starting with computational models.   This is an exciting approach, which I think will bear even more fruit in the future.

Ann R. Thryft
User Rank
Blogger
Re: Thank you
Ann R. Thryft   6/6/2012 11:52:07 AM
NO RATINGS
Dave, thanks for the feedback. I was impressed with the thorough, detailed approach this study took to the materials decision making process. There's been a lot more news about composites than about metals and, in fact, many of the R&D efforts I've reported on are new materials. Also, I've had a tough time getting many metals companies to talk to me about lightweighting, especially in the steel industry, especially for automotive applications. So thanks for the info about carburized steel. What I'm especially interested in is structural applications and AHSS, as well as titanium and magnesium in aerospace and/or automotive apps.

Rob Spiegel
User Rank
Blogger
Re: Thank you
Rob Spiegel   6/6/2012 2:53:55 PM
NO RATINGS
Ann, is there an industry component to whether new composites or legacy metals tend to win the lightweight argument? Seems that aerospace likes components. In the auto industry is there more bias toward steel? Or am I reading this incorrectly?

Ann R. Thryft
User Rank
Blogger
Re: Thank you
Ann R. Thryft   6/6/2012 4:32:46 PM
NO RATINGS
Rob, there are definitely industry differences. Generally speaking, aerospace has been using composites, both glass and carbon fiber-based, for decades, first in military planes and more recently in commercial aircraft (as well as in spacecraft). Whereas in cars it's more recent and confined primarily to race or specialty cars. Regarding metals, steel doesn't figure much in aircraft because of its weight; the primo metal there is aluminum. Metals in most commercial planes still average over 50%. In Detroit cars, metals are a much higher proportion, primarily because of the cost of composites and the difficulty in adapting their manufacturing to highly automated, high-volume automotive production. All of this is a moving target.

Rob Spiegel
User Rank
Blogger
Re: Thank you
Rob Spiegel   6/7/2012 9:21:06 AM
NO RATINGS
Thanks Ann. Sounds like steel still has a strong foothold in automotive. If steel can continue to develop stronger, lighter alternatives, it sounds like the steel industry can hold its own in cars.

kf2qd
User Rank
Platinum
How Strong?
kf2qd   6/7/2012 10:05:11 AM
NO RATINGS
The question still comes down to HOW STRONG IS IT? Researching a homebuilt car and the material requirements for structural strength and the weight savings aren't always there for lighter materials as you need more of the lighter material for the same strength. Cars and trucks need the strength to protect the passenger and deal with environmental factors (salt on the roads in the winter, accidents with other vehicles) while aircraft have used aluminum (and tubing ans cloth) and much more sophisticatd design to save weight ans still be strong. Imagine the cost of a Semi-Monoque car body built by riveting the layers together, but that is the approach aircraft use because weight is a controlling factor. In Automobiles weight is less of a concern, and durability and passenger protection as cars are more likely to be involved in an accident.

And how well would carbon fiber stand up to something trying to pierce it in an acceident? Steel, on the other hand, can deform and contain an object trying to piece the passenger compartment.

Smaller aircraft have used some of the composites, but a small savings on a 2000lb aircraft doesn't make much of a difference as compared to a 200,000lb aircraft so the savings does not always scale very well.

Another question is the repair of the vehicle - Stell is easy to cut and weld and repaint. Aluminum to cut and rivet ans paint. Would composites require a whole new section, and would it be available in 2 or 4 years?

And some of the chemicals rused in composites require special handling and present a whole new set of hazards to those handling them.

naperlou
User Rank
Blogger
Re: Legacy materials fight back
naperlou   6/7/2012 10:07:24 AM
NO RATINGS
Rob, good point.  One of the "features" missing from the article is the fabrication difficulty.  In aerospace and some high end applications, where the systems will last a long time, it is worth paying up front for more difficult fabrication.  I think it was on this site that a new technique for welding titanium was discussed.  This is just one example.  Aluminum is also more difficult to weld than steel.  Recall that most aircraft, which have used aluminum for a long time, are riveted.  Jaguar started making the bodies of their high end XJs of aluminum.  When they did that they save 500 pounds (on a 4,000+ pound vehicle).  Many wondered if they would ever recover the cost of the production line changes that had to be made.  As you mention, steel may end up getting better before price or process technology catches up for the other materials.  In addition, steel and aluminum are eaisly recyclable.

sjmonte@4kenrich.com
User Rank
Iron
The interface - where true nano-molecular adhesion occurs in fiber reinforced thermosets. Zirconates and Titanates are different than Silanes
sjmonte@4kenrich.com   6/7/2012 10:26:35 AM
NO RATINGS
The limitation of Carbon and Aramid and Glass reinforced materials - as well as nano-materials - is a lack of awareness of the ability to use zirconate and titanate and aluminate coupling agents to bond the interface of the fiber reinforcement to the polymer resin.  Silanes - the material that made the Corvette possible (fiberglass reinforced peroxide cured unsaturated polyester) - have severe interfacial reaction and environmental aging issues due to the nature of their molecular bond formation.

Sal Monte

 

Key Words:

 

Silanes

Titanates

Zirconates

Aluminates

Fiber Reinforcement

Interface

Composites

Ann R. Thryft
User Rank
Blogger
Re: How Strong?
Ann R. Thryft   6/7/2012 12:51:12 PM
NO RATINGS
I'm not sure what composites you're researching, but they sound like glass fiber. Carbon fiber is another story and answers your strength questions: the strength-to-weight ratio is higher for carbon fiber than steel and even higher than aluminum. Also, I'd bet that any carbon fiber materials you're likely to be able to purchase as a home user are not the ones you can get for building military or commercial aircraft.

Page 1/2  >  >>
Partner Zone
More Blogs from Engineering Materials
Artificially created metamaterials are already appearing in niche applications like electronics, communications, and defense, says a new report from Lux Research. How quickly they become mainstream depends on cost-effective manufacturing methods, which will include additive manufacturing.
SpaceX has 3D printed and successfully hot-fired a SuperDraco engine chamber made of Inconel, a high-performance superalloy, using direct metal laser sintering (DMLS). The company's first 3D-printed rocket engine part, a main oxidizer valve body for the Falcon 9 rocket, launched in January and is now qualified on all Falcon 9 flights.
A new thermoplastic composite for high-speed, high-volume injection molding has tensile strength that's close to, and sometimes better than, either lay-up composites or metals.
Lawrence Livermore National Laboratory and MIT have 3D-printed a new class of metamaterials that are both exceptionally light and have exceptional strength and stiffness. The new metamaterials maintain a nearly constant stiffness per unit of mass density, over three orders of magnitude.
Smart composites that let the material's structural health be monitored automatically and continuously are getting closer to reality. R&D partners in an EU-sponsored project have demonstrated what they say is the first complete, miniaturized, fiber-optic sensor system entirely embedded inside a fiber-reinforced composite.
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Aug 18 - 22, Embedded Software Development With Python & the Raspberry Pi
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service