HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials

Tiny Camera Sees Nonvisible Spectra

Page 1 / 2 Next >
View Comments: Oldest First|Newest First|Threaded View
Page 1/2  >  >>
Ann R. Thryft
User Rank
Blogger
Smaller "eyes" for smaller designs
Ann R. Thryft   3/16/2012 2:16:22 PM
NO RATINGS

What I like most about this technology is the huge difference in size between other multispectral cameras I've written about in the past and the fact that this is a chip-level solution, even doing post-processing filters on-chip. I think the need for this technology will only continue to increase as design features keep getting smaller, and with the mixes of multiple material types.


Rob Spiegel
User Rank
Blogger
Re: Smaller "eyes" for smaller designs
Rob Spiegel   3/16/2012 3:42:34 PM
NO RATINGS
This is impressive, Ann. What are some of the uses? You mention medical. Is that in diagnosis or medical equipment manufacturing. I would think this would have manufacturing applications.

Ann R. Thryft
User Rank
Blogger
Re: Smaller "eyes" for smaller designs
Ann R. Thryft   3/16/2012 4:16:35 PM
NO RATINGS

There's a large number of apps that could take advantage of this technology. Industrial machine vision and inspection of chips, boards and electronics sub-assemblies, R&D of several different kinds including component failure and analysis labs, medical labs of various kinds, and medical equipment manufacturing. It could possibly also be used in various kinds of materials detection, possibly in security apps, as well as for detecting counterfeit components made of inferior materials.


Charles Murray
User Rank
Blogger
Small size
Charles Murray   3/16/2012 6:55:10 PM
NO RATINGS
Having seen spectroscopy systems in the semiconductor industry in the 1980s, this seems like about as small a package as I can ever remember. Is this indeed smaller than the current state of the art? Has anyone else used a system on a chip approach like this one, Ann?

Aldo Agraz
User Rank
Iron
Re: Smaller "eyes" for smaller designs
Aldo Agraz   3/17/2012 12:48:35 AM
NO RATINGS
Hi Ann, this camera systems looks very interesting and powerful for many applications. I want to ask what is the typical spectral range of vision this components have and what is the difference with this one, I work with concentrated solar power systems and I wonder if this devices would work for analysis of ray tracing for beam radiation. Thank you and great article. 

Rob Spiegel
User Rank
Blogger
Re: Smaller "eyes" for smaller designs
Rob Spiegel   3/19/2012 12:24:26 PM
NO RATINGS
Interesting that it may be able to detect counterfeit components made of inferior materials. Right now, components coming back as returns are inspected by the human eye. There is a training program and certification for inspectors. But that process can't catch everything. Returns are the vulnerability area that lets counterfeit components into the legitimate-component bloodstream. A camera that can see better than the human eye could be a big help.

Ann R. Thryft
User Rank
Blogger
Re: Small size
Ann R. Thryft   3/19/2012 12:49:42 PM
NO RATINGS

Chuck, there are other multispectral sensor chips of varying sizes, architectures and wavelength ranges--usually IR or IR plus visible light--but Imec's combination of hyperspectral spectroscopy sensor with regular visible light image sensor is unusual. It may also beunique. It's certainly one of the smallest I've seen, but I don't read German and I wouldn't be surprised if there are others (Germany is a leader in machine vision and imaging technology). That said, European Imec is a leading edge research institution, and they have a lot of firsts to their name.


Ann R. Thryft
User Rank
Blogger
Re: Smaller "eyes" for smaller designs
Ann R. Thryft   3/19/2012 12:51:14 PM
NO RATINGS

Aldo, I'm not exactly sure what your question is. As the article states, the prototype chip's hyperspectral filter has 100 spectral bands between 560nm and 1,000nm. The filter bandwidth ranges from 3nm at 560nm to 20nm at 1,000nm, and the transmission efficiency is approximately 85 percent.\


williamlweaver
User Rank
Platinum
Amazing Technology
williamlweaver   3/19/2012 1:48:29 PM
NO RATINGS
Thanks, Ann!  This is amazing technology. Taking a look at the original release, Imec mentions integration times as short at 2 ms, which, not counting transfer time, would equate to their specified max of 500 fps. When it comes to their hyperspectral filter, it has a maximum of 100 band settings at an effective slew rate of 2000 bands per second, which puts it around 500 us per band -- darn fast. I'm guessing that is the reaction time of the electro-optics they are using for their proprietary filter. Either way, this is a really impressive piece of technology that should find rapid acceptance in all sorts of machine vision applications.

Ann R. Thryft
User Rank
Blogger
Re: Amazing Technology
Ann R. Thryft   3/19/2012 2:01:06 PM
NO RATINGS

William, thanks for the input. I'm not a specialist in this area, but I have a retentive reporter's memory and those specs sure looked leading edge, if not bleeding edge, to me. The one that first caught my eye, besides the integration of spectroscopy plus imaging on a chip, was the 6x maximum frame rate of the 4 MP image sensor. It's good to hear that the hyperspectral sensor frame rate is also wicked fast. The one thing we didn't get info on is the price. Since this is a prototype, it may go through some design shrinks for the first production runs that will help lower that.


Page 1/2  >  >>
Partner Zone
More Blogs from Engineering Materials
The amount of plastic clogging the ocean continues to grow. Some startling, not-so-good news has come out recently about the roles plastic is playing in the ocean, as well as more heartening news about efforts to collect and reuse it.
Optomec's third America Makes project for metal 3D printing teams the LENS process company with GE Aviation, Lockheed, and other big aerospace names to develop guidelines for repairing high-value flight-critical Air Force components.
Lots of people who write about robots say they give us jobs, instead of taking them away from humans. Based on the evidence in some recent studies, I'm not so sure.
A self-propelled robot developed by a team of researchers headed by MIT promises to detect leaks quickly and accurately in gas pipelines, eliminating the likelihood of dangerous explosions. The robot may also be useful in water and petroleum pipe leak detection.
Aerojet Rocketdyne has built and successfully hot-fire tested an entire 3D-printed rocket engine. In other news, NASA's 3D-printed rocket engine injectors survived tests generating a record 20,000 pounds of thrust. Some performed equally well or better than welded parts.
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Aug 4 - 8, Introduction to Linux Device Drivers
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: August 12 - 14
Sponsored by igus
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service