HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials
Injection Molding Goes High Volume
12/21/2012

Image 1 of 2      Next >

The award-winning Ford Escape instrument panel design has a complex geometry with changing wall thicknesses, making it difficult to meet required mechanical properties using solid injection molding processes. Creating the panel in the MuCell microcellular foam process reduced weight by more than 1 lb, improved mechanical properties, reduced cycle time, and lowered the part's cost by $3 per car.
The award-winning Ford Escape instrument panel design has a complex geometry with changing wall thicknesses, making it difficult to meet required mechanical properties using solid injection molding processes. Creating the panel in the MuCell microcellular foam process reduced weight by more than 1 lb, improved mechanical properties, reduced cycle time, and lowered the partís cost by $3 per car.

Image 1 of 2      Next >

Return to Article

View Comments: Newest First|Oldest First|Threaded View
Page 1/2  >  >>
William K.
User Rank
Platinum
Re: Aluminum or Steel, and a some observations
William K.   1/20/2013 5:56:32 PM
NO RATINGS
Since most of my working in the more recent past has been for smaller companies, the motivation is much closer to home, since we need to get any product right the very first time, or else we don't make any profit on it. That is some real motivation, as you can imagine.

jrryan
User Rank
Iron
Re: Aluminum or Steel, and a some observations
jrryan   1/19/2013 11:06:39 PM
NO RATINGS
Well william, you are Designing For Manufacture already then. I can tell you, there are designers and even engineers who are not. At least not for efficient manufacture. And as the addage of many ways to skin a cat goes, There are many ways to design a product for the same manufacture process. Just because the manufacture dictates how it is designed, doesn't necessarily follow that that is the most efficient design for manufacture. How long does it take to fabricate for example, does it require as many screw? Does it require screws at all? Do the parts require turning over to fit together on the assembly line? If so can they be designed to reduce the amount of turns? Are there sufficient guides in place to ease fitting parts together? Does the design require a certain finish, if not, can it be sparked for easier.quicker removal from the mould? How many other products can we incorporate parts from one or more common moulds? Etc...

 

As you've already demonstrated with your own experience, this kind of thinking in the design phase is the way forwards for good design engineers, yet not everybody leaving university is leaving with this drummed into their heads.

William K.
User Rank
Platinum
Re: Aluminum or Steel, and a some observations
William K.   1/19/2013 8:03:18 PM
NO RATINGS
jrryan , an interesting comparison to cooking. But if I don't have the ingredients for curry, then instead of making a deffective curry I would head in another direction and possibly make some fried chicken or beef stew.

My point is that unless one is intendingg to lead the organization in a new direction, it is a requirement to consider the production capabilities during the design stage, long before checking happens. Not only considering processes available, but also accuracy levels and the cost of those accuracy levels. Ultimately it equates to designing for high yield, hopefully 100%. That can only happen if one keeps production in mind at all times.

As for some of those poorly done injection molded parts with sink marks? YES, I have seen a few of them, and mostly the sink marks are in places where appearance does not matter much. I agree that sink marks are a production flaw, but sometimes they don't affect yield.

Of course, it is not certain that every engineer would also understand the ability of their organizations production department, but it is certain that at least some part of a design team should have a good grasp of how the product would be made. For many years I have asked other engineers, as we were discussing a design, "How would they make that?", and on quite a few occasions the designer had to visit the production people and find out. I have saved companies a few dollars that way, on occasion. It turns out that there are a few things that can be designed but that can not be produced, at least, not economoically. 

jrryan
User Rank
Iron
Re: Aluminum
jrryan   1/19/2013 9:31:44 AM
NO RATINGS
P.S. this link contains some interesting further reading on aluminium tooling for injection moulding: http://www.phoenixproto.com/about/aluminum-tooling-information/aluminum-tooling-myths/ as expected 7075 and QC-10 are in there, along with a few other variants.

jrryan
User Rank
Iron
Re: Aluminum or Steel, and a some observations
jrryan   1/19/2013 9:27:48 AM
NO RATINGS
William, I think the analogy you used is apt, and I definitely welcome the prevalence of idea that good design is by definition design for manufacture, but that precludes the fact that there are so many poorly designed products in the marketplace. How many times have you seen an injection moulded product with significant sinking? or another with a level of fabrication that clearly could be vastly simplified with snapfits?

So, to take your analogy a little bit further, if you were making a meal out of the ingredients in your cupboard, and you were intending to create a curry, but only had salt, pepper, tumeric, milk and chicken, you would do the best you could with the ingredients that matched the recipe. But what if you had other ingredients that don't normally feature in a curry, like bicarbonate of soda, or vinegar, or butter? They aren't on the list, so you overlook how they could be used in your best-effort "design". If you had the time and inclination, you could research how these other ingredients could produce much more vibrant flavour combinations and thus produce a better assimilation of the real thing.

But that still isn't really analogous of the DFM issue, To be a proper analogy, not only would the ingredients have to be throughly explored for suitability, the cooking of the dinner would have to be streamlined for bulk output, so you'd figure out your prep times, brebatch certain ingredients, cook everything in one pot instead of four, and steam your rice in a double boiler over the top. These are all simple efficiency tweaks, and it is merely another form of tweak that brings the concern for efficiency into the design process instead of the re-design process where mistakes and time wasted are corrected after the fact or through manufacturing hacks on the production line.

If you are a good designer, are you already implementing DFM? Well most likely yes, but it is possible that you aren't and the DFM takes place at the design checking stage, where people with more experience of manufacturing provide their input, but if you are a bad designer, then you definitely aren't taking any consideration of the manufacturing process (or at least as little as is necessary to develop a product) and that means a lot of wasted time, money, resources and ultimately really poor, crappy products that are nothing more than future landfill.

Ann R. Thryft
User Rank
Blogger
Re: Aluminum
Ann R. Thryft   1/3/2013 12:07:39 PM
NO RATINGS
Greg, no details were given on the specific aluminum grades used for tooling, but both Unique and DRS mention that it varies depending on volume and lifecycle constraints.

Scott Orlosky
User Rank
Platinum
Re: Aluminum or Steel, and a some observations
Scott Orlosky   12/30/2012 11:03:11 PM
NO RATINGS
As long as injection molding has been around, it's good to hear about advances in this "old" technology to improve its performance.  Sometimes what's needed is an evolution, not a revolution.

Ann R. Thryft
User Rank
Blogger
Re: Aluminum or Steel, and a some observations
Ann R. Thryft   12/27/2012 1:34:13 PM
NO RATINGS
I agree with William--when I first heard of DFM, my initial reaction was--"as opposed to what? Design Not For Manufacturing? Design Without Manufacturing?" DFT made sense, and later, DFR (R = either reassembly or recycling). OTOH, manufacturing processes, especially on highly automated lines, have gotten highly complex, as have some products, so more tailored DFM makes sense.

William K.
User Rank
Platinum
Re: Aluminum or Steel, and a some observations
William K.   12/26/2012 9:52:52 PM
NO RATINGS
I don't make any claim of originality about the assertions in my previous posting, nor that the concepts presented are that new. In fact, my intended point was "how else could you do it? The idea of keepingproduction isolated from design and engineering has always been a poor choice. At least, I think that we are all aware that it is a poor choice.

robatnorcross
User Rank
Gold
Re: Aluminum or Steel, and a some observations
robatnorcross   12/26/2012 5:55:44 PM
NO RATINGS
NEWS FLASH!!! We had better hope the Chinese don't get wind of this. They'll be flooding us with useless injection molded things for us to play with instead of actually working.

Our land fills will begin filling up with plastic toys, pc keyboards, mice (the electronic ones), cups, dishes, dinnerware, car instrument panels, you get the idea.

Page 1/2  >  >>
Partner Zone
More Blogs from Engineering Materials
An MIT research team has invented what they see as a solution to the need for biodegradable 3D-printable materials made from something besides petroleum-based sources: a water-based robotic additive extrusion method that makes objects from biodegradable hydrogel composites.
Polish design firm NAS-DRA has proposed parasitic robotic drones that capture carbon dioxide from the air during the day and release it at night to plants growing on their wings.
Alcoa has unveiled a new manufacturing and materials technology for making aluminum sheet, aimed especially at automotive, industrial, and packaging applications. If all its claims are true, this is a major breakthrough, and may convince more automotive engineers to use aluminum.
NASA has just installed a giant robot to help in its research on composite aerospace materials, like those used for the Orion spacecraft. The agency wants to shave the time it takes to get composites through design, test, and manufacturing stages.
The European Space Agency (ESA) is working with architects Foster + Partners to test the possibility of using lunar regolith, or moon rocks, and 3D printing to make structures for use on the moon. A new video shows some cool animations of a hypothetical lunar mission that carries out this vision.
Design News Webinar Series
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Jan 12 - 16, Programmable Logic - How do they do that?
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service