HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials
3D-Produced Carbon Composites Coming to Cars, Planes
8/6/2012

A revolutionary joint development initiative between Stratasys and Oak Ridge National Laboratory aims to develop the fused deposition modeling process, shown here in Stratasys' Fortus 900mc, for making high-quality production volumes of carbon fiber composite components.   (Source: Stratasys)
A revolutionary joint development initiative between Stratasys and Oak Ridge National Laboratory aims to develop the fused deposition modeling process, shown here in Stratasys' Fortus 900mc, for making high-quality production volumes of carbon fiber composite components.
(Source: Stratasys)

Return to Article

View Comments: Threaded|Newest First|Oldest First
TJ McDermott
User Rank
Blogger
Unsure of term
TJ McDermott   8/6/2012 10:03:39 AM
NO RATINGS
Ann, the article uses the term "out of autoclave" several times.  Does this mean the composite parts are fabricated without the use of an autoclave for curing?

Ann R. Thryft
User Rank
Blogger
Re: Unsure of term
Ann R. Thryft   8/6/2012 12:34:56 PM
NO RATINGS
Yes, TJ, that's one of the biggest deals about this project. Autoclave ovens are big, expensive and slow. Getting rid of them in one way or another is one of the goals behind several different research projects on speeding up carbon composite production, including this one we reported on earlier this year:
http://www.designnews.com/document.asp?doc_id=239474
"Out of autoclave" is to composite production a bit like "Open sesame" was for Aladdin trying to open the cave.

JimT@Future-Product-Innovations
User Rank
Blogger
Fused deposition modeling of ANYTHING !
JimT@Future-Product-Innovations   8/7/2012 1:10:26 PM
NO RATINGS
Really a fantastic concept, Ann.  When I think back to the first days of rapid prototyping and remember wondering "who came up with the idea of solidifying liquid polymer with a laser?"  Then, I look at this technology effort and am confident that it, too, will succeed as just one more example in our human journey of discovery. The explanation of the spindle-like carbon fibers being delivered via a filament brought a pretty clear image of intent, and I don't doubt they will eventually accomplish their goal. What a fantastic thought, really;  perhaps we can eventually FDM virtually any material?

Ann R. Thryft
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
Ann R. Thryft   8/7/2012 2:12:56 PM
NO RATINGS
Jim, considering all the hassles involved, not to mention costs, of producing carbon composites and all the R&D being pursued for faster, cheaper production methods, it boggles the mind that we could simply solve the problem by making them with FDM. But why not? This project is aiming not just dollars but some pretty creative and experienced brains at the problem. Maybe you're right: if we can solve this problem, then maybe FDM can be applied to a lot of other materials not considered before for AM techniques.

Jerry dycus
User Rank
Gold
Re: Fused deposition modeling of ANYTHING !
Jerry dycus   8/7/2012 3:17:37 PM
NO RATINGS
 

  A lot depends on how much, fast it  can put material down.  Unless very quick or only 1-3 units needed, it's going to be hard to beat using molds either either hand or machin layup.

  Now with the mold making by machine/Cad, making a mold costs little inhouse leaving little start up costs in that technic.

Whether it needs an autoclave depends on the resin chosen mostly.

But even their the mold can be designed to be heated so spray fibered resin by hand or machine and be it's own autoclave taking little more room.  It's how I normally handle faster curing. Since most curing produce their own heat just insulation could do with many resins.

The range of printed items from so many new materials including metals will change a lot of things but is likely too slow compared to well done mass production, at least for now.

 

 

Ann R. Thryft
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
Ann R. Thryft   8/8/2012 1:20:22 PM
NO RATINGS
Since they're working on both materials and processes, like those researching non-3D assembly, the material will most likely not involve resins that need to be cured. Many of the attempts at automating carbon fiber composite production are either developing much faster-drying resins, or avoiding them entirely. Regarding increasing speed, well, that's the main point of this research.

JimT@Future-Product-Innovations
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
JimT@Future-Product-Innovations   8/9/2012 11:20:15 PM
NO RATINGS
Recalling a particularly high-volume job I once designed, being a fully-automated 2-cavity, injection molding operation which produced a thin-walled plastic cell-phone housing at a molding cycle time of about 20 seconds ,,,,, That's 6 parts/minute. 

So the point raised about production molding cycle time vs FDM cycle time is a very valid point; and that 2 cavity example was a run-rate that I truly doubt any deposition process could ever match, (let alone, exceed).

But the tool cost of that set-up was around $280,000 as I recall, and the deposition process set-up is nearly zero by comparison; so we need to remember all of the variables in the equation for economy. 

I applaud and eagerly watch the FDM experiments advance.

Ann R. Thryft
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
Ann R. Thryft   8/10/2012 12:04:54 PM
NO RATINGS
Jim, thanks for that very specific injection molding example. Since Stratasys and Oak Ridge are at the beginning of the 3D-produced carbon composites research project, they're still defining parameters and performance targets. In composite manufacturing, there are a lot of variables and everything's contextual.

Doug Cook
User Rank
Iron
Re: Fused deposition modeling of ANYTHING !
Doug Cook   8/14/2012 3:23:24 PM
NO RATINGS
Customization is also key, particularly for orthotics/prosthetics.

 

Note, too, that this is a commercial application.  There is research being conducted on other composites, including functionally-gradient ones, that use extrusion-based deposition.

 

Partner Zone
More Blogs from Engineering Materials
Artificially created metamaterials are already appearing in niche applications like electronics, communications, and defense, says a new report from Lux Research. How quickly they become mainstream depends on cost-effective manufacturing methods, which will include additive manufacturing.
SpaceX has 3D printed and successfully hot-fired a SuperDraco engine chamber made of Inconel, a high-performance superalloy, using direct metal laser sintering (DMLS). The company's first 3D-printed rocket engine part, a main oxidizer valve body for the Falcon 9 rocket, launched in January and is now qualified on all Falcon 9 flights.
A new thermoplastic composite for high-speed, high-volume injection molding has tensile strength that's close to, and sometimes better than, either lay-up composites or metals.
Lawrence Livermore National Laboratory and MIT have 3D-printed a new class of metamaterials that are both exceptionally light and have exceptional strength and stiffness. The new metamaterials maintain a nearly constant stiffness per unit of mass density, over three orders of magnitude.
Smart composites that let the material's structural health be monitored automatically and continuously are getting closer to reality. R&D partners in an EU-sponsored project have demonstrated what they say is the first complete, miniaturized, fiber-optic sensor system entirely embedded inside a fiber-reinforced composite.
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Aug 18 - 22, Embedded Software Development With Python & the Raspberry Pi
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by igus
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service