HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials
Video: Biggest 3D Manufacturing Machine Builds Jet Fighter Wing Boxes
2/12/2013

A large, finished titanium structure built for an aircraft application using Sciaky's direct manufacturing technology that combines an electron beam welding gun with wirefeed additive layering. This method can make parts as large as 19 ft x 4 ft x 4 ft.   (Source: Sciaky Inc.)
A large, finished titanium structure built for an aircraft application using Sciaky's direct manufacturing technology that combines an electron beam welding gun with wirefeed additive layering. This method can make parts as large as 19 ft x 4 ft x 4 ft.
(Source: Sciaky Inc.)

Return to Article

View Comments: Threaded|Newest First|Oldest First
NiteOwl_OvO
User Rank
Gold
Interesting technology
NiteOwl_OvO   2/12/2013 3:33:02 PM
NO RATINGS
Very interesting technology. I'm glad they are developing this and increasing the speed that they can produce parts with additive manufacturing. However, it looks like they have a ways to go before it makes sense to use for production. From the video it appears that they have to machine the entire surface of the completed part before it can be used. It seems like using this method for prototyping and modeling makes sense. It should be good for development and even limited production runs. I'm sure we will all be watching this technology evolve with great anticipation.

Ann R. Thryft
User Rank
Blogger
Re: Interesting technology
Ann R. Thryft   2/12/2013 4:48:45 PM
NO RATINGS
Nite_Owl, thanks for your comments. Sciaky says it's working with Lockheed to develop this technology further, but it is being used in real aircraft production environments, not for prototypes. For some OEMs, the ability to make parts this big in one pass at a reasonable rate of speed outweighs the value of making much smaller parts at a faster speed and bolting them together.

NiteOwl_OvO
User Rank
Gold
Re: Interesting technology
NiteOwl_OvO   2/12/2013 5:12:06 PM
NO RATINGS
Ann,

My thought was that it might make sense to either cast or drop forge the part. You could also cast smaller pieces and weld them together and then do the final machining, but hey that would be old school. Don't get me wrong, I love additive manufacturing and I can't wait for this technology to become mainstream. Just think what inventors can create with machines like that. Glad to hear that Lockheed is involved. Very exciting...

ScotCan
User Rank
Platinum
Re: Interesting technology
ScotCan   2/28/2013 4:04:49 PM
NO RATINGS
This is really interesting. The picture suggests that an original NC program was used (the lines in the pockets are characteristic of first cut NC processes) and if this is the case then being able to manufacture complex parts with large reductions in scrap material puts North America in a very competitive position.

Now all we need is to get the test to destruction data for that part to find out if the layering process provides a consistent interface condition and if THAT is acceptable and matches traditional manufacturing methods and their strength requirements there's no looking back...this is the way to make expensive parts!

Ann R. Thryft
User Rank
Blogger
Re: Interesting technology
Ann R. Thryft   3/1/2013 12:45:29 PM
NO RATINGS
Thanks, ScotCan. I was hoping someone who's seen one of these before could say something about what that photo reveals. I'm sure Lockheed knows exactly what they're doing by backing this technology and, in fact, helping to co-develop it. Too bad we're not likely to get the data you mention for obvious reasons.



williamlweaver
User Rank
Platinum
Re: Interesting technology
williamlweaver   2/12/2013 4:56:00 PM
NO RATINGS
I'm going to guess that the additive technology makes sense when the traditional "subtractive" CNC technology needs to remove more than about 50% of the source material. We've been watching NOVA's Battle of the XPlanes for a few years in our materials class and "Bulkhead 270" for Lockheed's F-35 JSF is a particularly intricate component made of titanium alloy.

The finished 300 lb part is whittled down from a 5-ton slab of the alloy (10,000 lbs). So grinding 24/7 for weeks to obtain a part that is only 3% of the starting slab sounds like this additive method would be a smart route if the resulting material properties are appropriate...  

NiteOwl_OvO
User Rank
Gold
Re: Interesting technology
NiteOwl_OvO   2/12/2013 5:38:44 PM
NO RATINGS
William,

I guess it depends on the material. Titanium is pretty tough to machine compared to say aluminum, so it might make sense to remove up to 80% of the material with aluminum while titanium maybe only 40 to 50%. If they cast the part in section, since it's large, and welded the pieces together, then only minimal machining would be required.

I suspect that heat treating and stress relieving would be required for a lot of parts made using this method of additive manufacturing. With the exception of the bottom-most substrate, the completed part is basically made up of layers of weld. I would think warping and stress fractures might be a problem.

I was blown away by how fast that machine could weld, though. That electron beam welding gun is awesome!

TJ McDermott
User Rank
Blogger
Re: Interesting technology
TJ McDermott   2/12/2013 10:48:38 PM
NO RATINGS
300 pound titanium part

15 pounds per hour deposition rate for this technology

gives

20 hours to get most of the part.  This is going to be an interesting technology to follow.

JimRW
User Rank
Silver
Re: Interesting technology
JimRW   2/13/2013 9:46:31 AM
Aerospce parts are high value and low volume. Raw material costs for Titanium alloys can be $35/pound and more so reducing the volume of chips made makes great economic sense. As WilliamWeaver points out, a 300# part can start from a 10,000# blank, making $339,500(est.) worth of titanium chips.

Forging such large titanium parts also has issues, requiring very specialized, high tonnage machines, of which there are not many, along with finished machining and past heat treatment(s).

These parts are also highly engineered with the fabrication processes needing to not only achieve the desired net shape, but also the desired strength and performance in critical areas. I wonder if this build up process allows more control of the finished material properties in specific areas of the finished part, since they are effectively working with smaller "building blocks" of material.

Ann R. Thryft
User Rank
Blogger
Re: Interesting technology
Ann R. Thryft   2/13/2013 10:34:30 AM
NO RATINGS
I think JimRW nailed it. The big deal isn't just how much material must be wasted before this technology becomes viable--it already *is* viable because of what material is being wasted and how much it costs: incredibly expensive titanium. That's why various methods of building parts from titanium are being used that don't include machining, or only include a small amount of post-processing, such as AM in different flavors, and powder metal (PM) methods. The second major factor is size of those parts, the fact they are structural and must meet high performance standards, and the difficulty forging & machining them. Good point about control--I don't recall that mentioned by the folks at Sciaky but it does seem intuitively obvious.

NiteOwl_OvO
User Rank
Gold
Re: Interesting technology
NiteOwl_OvO   2/13/2013 12:22:37 PM
NO RATINGS
I don't know. It looks like they are removing 30 to 50% of the material they added in the final machining process. A lot of expensive chips on the floor, plus machining cost. With casting, even in sections, the waste would be very low and the final machining would be minimal. The sintered powdered metal flavor of AM would also waste less and might reduce or even eliminate final machining, but takes a lot more time.

The best thing about this technology is that you can go from design to development to testing to manufacturing very quickly. If demand out paces your capacity, you could shift to other higher volume production methods. This would be perfect for custom part production.

Dave Palmer
User Rank
Platinum
Re: Interesting technology
Dave Palmer   2/14/2013 7:23:37 PM
NO RATINGS
@NiteOwl_OvO: I agree with you that the best thing about this technology is the ability to prototype.  You could make a part like this as a forging or as a casting, and get much closer to net shape, at a much lower cost, but you'd have to invest in tooling.  You could also weld the part out of titanium plate.  That wouldn't be cheap, but it might be chaper than 3D printing, at least for now.

Elizabeth M
User Rank
Blogger
Re: Interesting technology
Elizabeth M   2/15/2013 7:07:34 AM
NO RATINGS
Impressive! But as others have pointed out, probably not quite ready for prime time.

Ann R. Thryft
User Rank
Blogger
Re: Interesting technology
Ann R. Thryft   2/19/2013 3:11:20 PM
It's true that this technology is in the process of being commercialized. But I'm not sure where anyone is getting the idea that using very expensive titanium--or the other metals we mentioned that Sciaky uses--to prototype is the only thing this technology is being used for. It's not just being used for prototyping. It's also being used for direct manufacturing. That's another term for actual parts, not prototypes. The wing box is not a prototype: it's an actual part built for Lockheed. More direct-manufactured parts will; be built for the F-35:

http://www.lockheedmartin.com/us/news/press-releases/2012/april/120412ae_lockheed-martin-sciaky-partner.html

http://www.sciaky.com/documents/Fabricator_May2012_GameChanger-Sciaky.pdf

And they're net/near-net parts, not those that create 30-50% waste.

William K.
User Rank
Platinum
3D wing box example
William K.   3/1/2013 8:22:44 PM
NO RATINGS
I am quite impressed at this 3D part of titanium. They were able to copy the machined part even as far as the machining marks. Actually that does make me question the pictures authenticity a bit. BUT it is certainly w great thing to be able to do additive manufacturing with such a high strength material. It may also open up the option of changing the alloy proportions depending on the strength needed in each section of a component such as the wing box. Just putting the maximum strength where it is needed could save weight and money, possibly. 

But just the availability of making parts out of high strength materials is quite exciting. It will certainly be interesting to learn about how the various properties compare with cast and forged versions.

Ann R. Thryft
User Rank
Blogger
Re: 3D wing box example
Ann R. Thryft   3/4/2013 1:12:50 PM
NO RATINGS
William, thanks for the feedback. I agree, this is an exciting step forward and I'm really interested to see what the result will be of further cooperative development with Lockheed.

RogueMoon
User Rank
Gold
additive machining parts challenge
RogueMoon   3/13/2013 10:09:36 AM
NO RATINGS
It's great to see larger and larger parts being built at increasingly faster rates.  If the additive machining community wants a challenge, try making a small pressure vessel and testing it to ASME standards. That may bolster confidence in metallic parts built by this process. Pretty shapes made fast and cheap are one thing.  Parts that people can stake their lives on would be the gateway to acceptance.

Ann R. Thryft
User Rank
Blogger
Re: additive machining parts challenge
Ann R. Thryft   5/1/2013 4:56:45 PM
NO RATINGS
Thanks, RogueMoon, and well said. That's exactly why I report on aircraft usage of 3D printing/AM for actual production parts: this is not hobbyist stuff, not prototypes, and some of us will be flying on it soon.

mecho_greco
User Rank
Iron
Close to form forging
mecho_greco   5/1/2013 4:52:38 PM
NO RATINGS
Am I missing the point here? Machining is still reauired to complete (arguably less), however what is the benefit against a close to form forging that is also getting finished machined and is cuurently commercialised. Do not get me wrong good to know that this can happen but I cannot see its application at the moment, although I need to admit I cannot see the economics of the process yet.

llondon
User Rank
Iron
Re: Close to form forging
llondon   10/3/2013 10:45:54 AM
NO RATINGS
Issue with forgings is that long lead time and expensive tools are needed.  With additive manufacturing design changes do not require new tooling. 

William K.
User Rank
Platinum
Re: Close to form forging
William K.   7/28/2014 9:13:50 PM
NO RATINGS
The advantage of the additive manufacturing method, instead of the forging method, is that complex and expensive tooling is not required. So a serious cost reduction and much more flexibility are the two main benefits. Also, a much shorter lead-time due to not needing those expensive forging dies.

Partner Zone
More Blogs from Engineering Materials
An MIT research team has invented what they see as a solution to the need for biodegradable 3D-printable materials made from something besides petroleum-based sources: a water-based robotic additive extrusion method that makes objects from biodegradable hydrogel composites.
Polish design firm NAS-DRA has proposed parasitic robotic drones that capture carbon dioxide from the air during the day and release it at night to plants growing on their wings.
Alcoa has unveiled a new manufacturing and materials technology for making aluminum sheet, aimed especially at automotive, industrial, and packaging applications. If all its claims are true, this is a major breakthrough, and may convince more automotive engineers to use aluminum.
NASA has just installed a giant robot to help in its research on composite aerospace materials, like those used for the Orion spacecraft. The agency wants to shave the time it takes to get composites through design, test, and manufacturing stages.
The European Space Agency (ESA) is working with architects Foster + Partners to test the possibility of using lunar regolith, or moon rocks, and 3D printing to make structures for use on the moon. A new video shows some cool animations of a hypothetical lunar mission that carries out this vision.
Design News Webinar Series
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Jan 12 - 16, Programmable Logic - How do they do that?
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service