HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials
Bioplastics Recycling Options Expand
3/23/2012

Although durable bioplastics can usually be recycled, composting is usually the most common option for food serviceware, such as these plate, bowl, lid and cup prototypes made of NatureWorks' Ingeo bioplastic based on BioAmber building blocks.   (Source: NatureWorks)
Although durable bioplastics can usually be recycled, composting is usually the most common option for food serviceware, such as these plate, bowl, lid and cup prototypes made of NatureWorks' Ingeo bioplastic based on BioAmber building blocks.
(Source: NatureWorks)

Return to Article

View Comments: Newest First|Oldest First|Threaded View
Page 1/2  >  >>
Ann R. Thryft
User Rank
Blogger
Re: Post-Consumer Bioplastics Recycling
Ann R. Thryft   4/5/2012 7:48:34 AM
NO RATINGS

wykratz, thanks for your input. It's great to hear from someone directly involved in bioplastics recycling. Interestingly, I met with both people from NatureWorks quoted in this article yesterday at the National Plastics Exposition in Orlando, FL. And I asked them the same question: how are bioplastic food service items coded and does that help in recycling? They told me that bioplastics are marked with the "7" or "other" category, as you mention. However, this coding system was developed for materials code labeling, not as a sorting system for recycling. Looks like we need a better coding/labeling system for consumers: I know I get confused, too, when trying to recycle, especially in public venues.


wtkratz
User Rank
Iron
Post-Consumer Bioplastics Recycling
wtkratz   4/4/2012 4:16:56 PM
NO RATINGS
Great article. Definitely current to the trends with bioplastics.

I manage a post-consumer bioplastics recycling initiative on a university campus. The bioplastic waste is being source separated at various dining locations on campus. Issues that our project has run in to are numerous:

1) The clear plastic bioplastic products (used by all dining facilities on campus) look just like PET products. So it is difficult for even people that care to recycle to easily tell the difference.

2) There is much confusion among students about our project because many of them that are environmentally conciencious know that the PLA (polylactic acid) waste is compostable, so they think our project is for composting instead of recycling and they think they are helping by including their food and paper waste in our recycling bin. My team of students has tried to use bold sinage that says "Place food waste in the trash, then place your PLA waste here". It has helped, but there is still some confusion certainly. All of the food waste and other garbage is currently being sorted by hand.

3) Because these products are used as "to-go" it is very difficult for our project to have messaging and containers everywhere that these products may travel to like academic buildings. We have implemented collection receptacles in the lobby of each residence hall, but few students have utilized them.

4) Getting college kids to really understand the entire process and significance of the project is very difficult; most of them truly don't care about how much waste they produce and where it goes.

Overall since September 2011 our project, titled FRESH, has diverted ~300lbs of PLA waste from going to a landfill. It's a start.

The PLA waste that has been collected has been stored on campus and will be shipped in one batch to a company in Eau Claire, WI that has the capability to do chemical recycling of PLA.

The PLA bioplastics have a resin identification code of 7, which is the broad category "other plastics". There is momentum to change the resin identification code to 0 for PLA. I've seen the 0 used on a select few items, but not the items we use on our campus.

I am a graduate student in waste management at UW-Stevens Point. The website for the FRESH Project is www.uwsp.edu/fresh. The project is led by the Wisconsin Institute for Sustainable Technology (WIST) and is funded by the Wisconsin State Energy Office. Transparency is the best policy for efforts like this one.

My graduate research is comparing the two end-of-life options for PLA waste: composting vs. chemical recycling.

Ann R. Thryft
User Rank
Blogger
Re: Recycling Bioplstics.
Ann R. Thryft   4/4/2012 9:47:58 AM
NO RATINGS
William, I'm with you on those priorities, and so is everyone I've talked to about recycling and converting non-recycled plastics into fuel in my upcoming May feature on alternative energy. At each stage in the material's lifecycle, the question is often phrased as "what is the best and highest use, from both an economic and an environmental perspective?" Recycling is always considered first, but if that's not possible or would cost too much in money or environmental burden, then other energy recovery options should be explored.

William K.
User Rank
Platinum
Recycling Bioplstics.
William K.   4/3/2012 11:20:05 AM
NO RATINGS
Ann, it is certainly correct that allowing plastics to decompose in a landfill is a waste of either the recoverable energy or the material itself. ON the other side, however, is the question about the cost of doing anything else. My preference would be complete recycling of almost everything. The challenge is in the collection and sorting, of course. Much of the material would need to be extracted from the municiple waste stream, since a large portion of the population seems to be unwilling or unable to separate anything for recycling. That is where the problem lies.

Ann R. Thryft
User Rank
Blogger
Re: Bioplastic recycling
Ann R. Thryft   4/3/2012 8:54:05 AM
NO RATINGS
 

William, as we've mentioned before, the two main problems with letting plastics degrade in the sun is that it takes way too long, and all that potential energy as a BTU value is wasted. Bioplastics are not necessarily biodegradable. Regarding labeling, I think you mean end-user sorting codes. Whether they are marked with the same information for recycling as petro-based varieties, I don't know, but would be surprised if they weren't.

 

William K.
User Rank
Platinum
Bioplastic recycling
William K.   3/30/2012 9:42:09 PM
NO RATINGS
My first question is how are the bioplastics identified? Is there a symbol for the recyclers, or anybody, to identify them by?

One advantage that the old dumps used to have that was much more effective than the modern encapsulation process was the exposure of the materials to both the ultraviolet from the sun and a constant supply of air and water. 

In order for recycling to succeed it must be a bit profitable, otherwise it will exist as a drain on most governments. I don't have the answers about how to make it profitable right now, but I am working on it. And amazingly enough, the solution will not involve the government setting up programs, but rather the government getting out of the way.

Ann R. Thryft
User Rank
Blogger
Re: Bioplastics
Ann R. Thryft   3/26/2012 3:45:43 PM
NO RATINGS

The focus of my May feature is on plastics to oil technologies, not on harvesting energy from managed compositing at landfills, so I don't have details on those latter processes. The more common energy harvesting processes that are not plastics-to-oil either use mixed plastics and paper waste for solid recovered fuel (SRF) or refuse derived fuel (RDF), or the older combustion technologies of waste to energy (WTE) that use unsorted materials. 


Rob Spiegel
User Rank
Blogger
Re: Bioplastics
Rob Spiegel   3/26/2012 1:45:19 PM
NO RATINGS
This is very helpful, Ann. Are some landfill doing managed composting?If so, do you know how they separate what cane be composted from what can't be composted? 

Ann R. Thryft
User Rank
Blogger
Re: Bioplastics
Ann R. Thryft   3/26/2012 1:21:13 PM
NO RATINGS

It's true that some energy harvesting is occurring at landfills, but it's important to remember that there's a world of difference in CO2 released between unmanaged biodegradation in the typical landfill or anywhere else on the one hand, and managed composting in landfills or anywhere else, on the other. A biodegradable material can take many many years to finish biodegrading, during which time it releases considerable amounts of CO2 and may also leave undesirable residues in the soil. Composting, when done right, happens a lot faster, capturing more CO2 and leaving little or (preferably) no residues.

There are many places on the web to find our more, but here's some info and definitions from BASF, a bioplastics maker:

http://www.bioplastics.basf.com/faq.html


Ann R. Thryft
User Rank
Blogger
Re: Bioplastics
Ann R. Thryft   3/26/2012 1:18:38 PM
NO RATINGS

Chuck, it is possible to recycle plastics into fuels, which is the subject of my upcoming May feature article on alternative energy. However, bioplastics aren't currently a large component in such recycled plastics-based fuel, since they represent such a small part of the plastics waste stream and since plastics-to-oil technology is only just starting to take off commercially. But yes, you can start with either biomaterials or petromaterials to get to ethanol, and this is happening in small numbers.


Page 1/2  >  >>
Partner Zone
More Blogs from Engineering Materials
Artificially created metamaterials are already appearing in niche applications like electronics, communications, and defense, says a new report from Lux Research. How quickly they become mainstream depends on cost-effective manufacturing methods, which will include additive manufacturing.
SpaceX has 3D printed and successfully hot-fired a SuperDraco engine chamber made of Inconel, a high-performance superalloy, using direct metal laser sintering (DMLS). The company's first 3D-printed rocket engine part, a main oxidizer valve body for the Falcon 9 rocket, launched in January and is now qualified on all Falcon 9 flights.
A new thermoplastic composite for high-speed, high-volume injection molding has tensile strength that's close to, and sometimes better than, either lay-up composites or metals.
Lawrence Livermore National Laboratory and MIT have 3D-printed a new class of metamaterials that are both exceptionally light and have exceptional strength and stiffness. The new metamaterials maintain a nearly constant stiffness per unit of mass density, over three orders of magnitude.
Smart composites that let the material's structural health be monitored automatically and continuously are getting closer to reality. R&D partners in an EU-sponsored project have demonstrated what they say is the first complete, miniaturized, fiber-optic sensor system entirely embedded inside a fiber-reinforced composite.
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Aug 18 - 22, Embedded Software Development With Python & the Raspberry Pi
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service