HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials
Aluminum Composite to Lower Weight in Brake Rotor
2/15/2012

An aluminum composite brake rotor that weighs 60 percent less than cast iron and lasts three times as long is expected to cut about 30 pounds from midsize sedans. 
(Source: NYU-Poly)
An aluminum composite brake rotor that weighs 60 percent less than cast iron and lasts three times as long is expected to cut about 30 pounds from midsize sedans.
(Source: NYU-Poly)

Return to Article

View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 3/3
wb8nbs
User Rank
Silver
Michigan Winter
wb8nbs   2/16/2012 9:39:06 AM
NO RATINGS
Wonder how the bare Aluminum holds up to a winter of road salt?

JimT@Future-Product-Innovations
User Rank
Blogger
Re: Metal matrix composites
JimT@Future-Product-Innovations   2/16/2012 7:03:06 AM
NO RATINGS

I was wondering about the method of manufacture and secondary finishing operation.  What alloy compound elements are tolerant enough to withstand the casting process yet still be machineable-?  From the photo, I was further wondering about the dimples on the face of the rotor; their purpose and how they were formed.  Is this a powder sintered part-?

Ann R. Thryft
User Rank
Blogger
Re: Metal matrix composites
Ann R. Thryft   2/15/2012 12:12:38 PM
NO RATINGS
 

Thanks, Dave, I was hoping you'd weigh in with some info and feedback about metal matrix composite (MMC) technology. Thanks also for the links. I'm especially interested in what you said about machinability. In fact, when I first read about this MMC I wondered how the heck the ceramic chunks would affect both flatness and flexibility of the matrix fabric. The only thing that came to mind was if they are very, very small chunks or particles.

 

Ann R. Thryft
User Rank
Blogger
Re: UNSPRUNG Weight Reduction!
Ann R. Thryft   2/15/2012 12:11:51 PM
NO RATINGS

Thanks for the comments and feedback. Beth, I was also pleased to see an area of the vehicle besides batteries and body panels targeted for weight reduction. Al, this is still in R&D--the prototype isn't yet completed--and there was no mention yet of any industry partners. I, too, was impressed by the 3x service life improvement--I hope it turns out to be true. Stephen, thanks for the info about unsprung weight. And I agree, it's most likely that this, like many other automotive material innovations, may be aimed at higher-priced vehicles.


Dave Palmer
User Rank
Platinum
Metal matrix composites
Dave Palmer   2/15/2012 11:29:24 AM
NO RATINGS
@Ann: Thanks for a good article about an issue which is very close to my heart.  I used to work for a brake manufacturer, and heavily promoted the use of metal matrix composites for both rotors and calipers.  As your article points out, this is an area where significant weight savings can be achieved.  Many companies are doing work in this area.  One which comes to mind is GS Engineering.

It may be worth noting that cast iron itself can be thought of as a composite material (with graphite as the reinforcement), and that induction hardening can provide "functionally graded" properties.  In that sense, functionally graded metal matrix composites are not really such an exotic departure from what brake manufacturers have been doing for years -- we just never called it that.  But aluminum MMC technology gives us an even greater ability to tailor material properties, at a fraction of the weight. 

It would be very interesting to know some of the details of this product.  For example, what is the reinforcement? (Silicon carbide, aluminum oxide, both, or neither?) Is the composite made by stir casting or infiltration? How is the distribution of the reinforcing particles/fibers achieved? Of course, REL might be understandably reticent about revealing all of these details.

A major issue with MMCs, not mentioned in the article, is machinability.  Putting hard ceramic particles or fibers in a material is a great way to improve its mechanical properties.  But how do you machine something which is full of chunks of hard ceramic without destroying your tooling? You either have to use expensive diamond tooling, or you have to find an ingenious way to keep ceramic out of the areas you want to machine.

One interesting approach for brake calipers, which Allied Signal took out a patent on back in the '90s, is to cast an aluminum MMC with unreinforced aluminum inserts.  The inserts go in the areas which are going to be machined later.

I could go on and on about this.  Thanks for an article on such an important topic!

Stephen
User Rank
Gold
UNSPRUNG Weight Reduction!
Stephen   2/15/2012 9:55:11 AM
NO RATINGS
The best part is the weight reduction is unsprung weight, so has the potential to improve handling and ride quality as well as improve fuel economy and hard braking performance.

Logical place to start would be w/ performance/luxury brands/models, where the higher initial cost is better tolerated, then move down into lower priced/featured vehicle lines as high volume real world experience accumulates, much as (long long ago now) front disc brakes, then, more recently, rear, have replaced drums. 

apresher
User Rank
Blogger
3X Life
apresher   2/15/2012 9:16:11 AM
NO RATINGS
Ann,  Great story.  The possibility of a 3x service life is obviously a huge advantage and balances off against the higher initial cost and makes determining the value more interesting. Any specific interest among industry partners for this technology? Manufacturability and ability to scale to achieve target costs have to be a major objectives.

Beth Stackpole
User Rank
Blogger
Yet another strategy for weight reduction
Beth Stackpole   2/15/2012 7:32:01 AM
NO RATINGS
Cool development and yet another tool for auto makers to take weight out of their vehicles, aiding in energy efficiency and potentially, reducing costs. With all the focus on EV battery weight and other aspects of the next-generation of more fuel efficient cars, it's great to get a handle on some of the other developments and research around materials that can also aid in promoting more efficient vehicles.

<<  <  Page 3/3
Partner Zone
More Blogs from Engineering Materials
HP revealed more of its 3D printing plans in a recent webinar. Senior vice president of inkjet and graphics solution business Stephen Nigro spoke about how the technology works and expanded on HP's vision of open collaboration to commercialize its Multi Jet Fusion 3D printing technology for end-production, and open collaboration on new materials. He also said HP will create software to help users decide when to use Multi Jet Fusion versus conventional subtractive manufacturing.
A lightweight electric urban concept car designed by several European companies weighs only 992 lb without its battery. It would have weighed 26.7 lb more if its windows were made of glass instead of the specially coated LEXAN polycarbonate resin from SABIC Innovative Plastics.
Skylar Tibbits' team in MIT's Self-Assembly Lab is now 4D printing self-assembling shapes made of programmable carbon composites and custom wood grain. The composites are being used in a sport car airfoil, and the wood grain is beautiful.
The NanoSteel Company has produced high-hardness ferrous metal matrix composite (MMC) parts using a new nanosteel powder in a one-step 3D-printing process. Parts are 99.9% dense, crack-free, and with wear resistance comparable to M2 tool steels.
After a year or so of missteps, false starts, retractions, and postponements, inkjet office printer giant Hewlett-Packard has finally revealed just what it plans to do in 3D printing.
Design News Webinar Series
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Dec 1 - 5, An Introduction to Embedded Software Architecture and Design
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Littelfuse
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service