HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Engineering Materials
Report: 3D Printing Will (Eventually) Transform Manufacturing
4/18/2013

Although consumer applications have gotten a lot of attention, these will remain a small portion of the 3D printed parts market. By 2025, prototypes and production parts for automotive, medical, and aerospace segments combined will represent 84 percent of the entire market.   (Source: Lux Research)
Although consumer applications have gotten a lot of attention, these will remain a small portion of the 3D printed parts market. By 2025, prototypes and production parts for automotive, medical, and aerospace segments combined will represent 84 percent of the entire market.
(Source: Lux Research)

Return to Article

View Comments: Oldest First|Newest First|Threaded View
Page 1/4  >  >>
Elizabeth M
User Rank
Blogger
Interesting stats
Elizabeth M   4/18/2013 8:48:12 AM
NO RATINGS
Interesting report, Ann. I am not surprised that the consumer space will only be a small portion of the market growth, and that prototyping and small-volume manufacturing will contribute to most of it. But I think a lot of people who don't follow the industry might not realize this because, as you said, consumer products get a lot of play (and of course, are sexier to the general public than manufacturer's use of 3D printing). But all in all, it will be interesting to see how this plays out.

Ann R. Thryft
User Rank
Blogger
Re: Interesting stats
Ann R. Thryft   4/18/2013 11:57:26 AM
NO RATINGS
Thanks for your comments, Elizabeth. I've been writing about this space for awhile, but was surprised at what a small proportion of the market comprises consumer applications right now. Those are what's getting all the media attention from the non-technical press, since they've got the sci-fi magic-like appeal of "instantly" creating something.

78RPM
User Rank
Platinum
Re: Interesting stats
78RPM   4/18/2013 2:42:33 PM
NO RATINGS
As you probably know and may have written about already, a company called ExOne recently had its IPO.  Their printers can print in brass, stainless steel and sand. They can print pretty large objects. Their website says the Navy uses the printers to print out-of-production parts for old ships. The process is far cheaper than going out to bid for someone to make them.

Cabe Atwell
User Rank
Blogger
Re: Interesting stats
Cabe Atwell   4/18/2013 8:10:56 PM
NO RATINGS
It is already transforming. I had my first prototype 3D printed recently. I did it in a matter of seconds on Shapeways website. I could never get the object made for cheaper. It's the way to go.

It will be a slow adoption only due to the materials and resolution limitations. Like a singularity, a high-rez printer, higher than anything we have now, will make industry explode.

C

JimT@Future-Product-Innovations
User Rank
Blogger
Consider the process -- not the parts
JimT@Future-Product-Innovations   4/18/2013 10:07:31 PM
NO RATINGS
Ann, the biggest hurdle to 3D printing ever catching and surpassing conventional molding is the high-volume throughput capability of injection molding. Typical molded parts (components of super high volume products like iPhones) are injection-molded in about 20 seconds -- usually with multiple cavities – so routine production yields 3 parts/minute per cavity.    

So, accepting that AM methods will never be able (did I say never-?) to reach this "run-rate", then  the logical application of the 3D methods is to print the tooling; not the parts.

Even after great strides have been made in slashing tooling lead-times over the past 15 years, tool-makers lead-times are still measured in "weeks" (4-6 is average)  for conventional mold tools. Imagine if toolmakers simply printed the mold base using an advanced SLS method for metals; a mold base typically taking 2 weeks to complete could be measured in hours. 

Accordingly, my vision of the3DP & AM industry points at tooling --  I just cannot imagine the part processing ever matching market demand.

Plastics Engineer
User Rank
Iron
Re: Consider the process -- not the parts
Plastics Engineer   4/19/2013 9:54:15 AM
NO RATINGS
Jim,

Having been involved with rapid prototyping since the mid-late 90's and in the plastics industry for longer, I understand what you are saying.  Will AM replace high volume production?  I can't say that is will.  I do believe that with the improvements in the available materials, accuracy of the machines, and their increased capabilities, I can see AM having a significant impact on low volume or quick turn parts.  If I can get 10-20 or even 100 parts that will perform as needed in the same time it would take to build a mold, it becomes the obvious choice.  Companies like Invisa-Line creating custom orthodontics, or Rausch making custom 1-off racing parts is where this technology is already transforming manufacturing.  I see this growing and becoming more wide spread as time goes on.  As more become aware of the capabilities, as well as understanding the limits, parts can be designed accordingly.  Think of the metal to plastics conversion.  The designs had to change to account for different properties, and as people became more educated accordingly, other features not possible in metal were added.  Assemblies can be simplified by designing the molded parts differently.  If the same approach it taken with AM, I think the sky is the limit.

Ann R. Thryft
User Rank
Blogger
Re: Interesting stats
Ann R. Thryft   4/19/2013 11:24:43 AM
NO RATINGS
78RPM, thanks for your comments and the info on ExOne--we did write about them and what they're doing with metals and other materials:
http://www.designnews.com/document.asp?doc_id=252293
But we like to hear about new players in this widening industry.



Ann R. Thryft
User Rank
Blogger
Re: Consider the process -- not the parts
Ann R. Thryft   4/19/2013 11:25:37 AM
NO RATINGS
Jim, so far most pundits are not saying 3D printing and AM will affect the high end of production, as the Lux analyst points out, and for the reasons you cite. It's low-volume parts that will likely be transformed. Tooling is also a target for some of the R&D funded by NAMII.

78RPM
User Rank
Platinum
Re: Consider the process -- not the parts
78RPM   4/19/2013 1:25:22 PM
NO RATINGS
It is true that current 3D printers cannot attain production speeds. But they can create jobs and improve process productivity. What if an architect model maker could print a model in two hours instead of hand building it in two weeks. The architect gets the proposal to the customer two weeks earlier and the project can proceed earlier and get construction workers to work earlier.

Some companies and government offices use antiquated equipment by economic necessity. If a part is no longer in production, 3D printing a part can save the machine.  I imagine a fan blade or impeller that is typically stamped from sheet metal; but maybe its efficiency could be improved by varying the edge thickness. 3D printers could print a mold and the manufacture could be done by molding metal powder.  I think I recall Ann writing about NASA considering sending 3D printers to asteroids and Mars and the moon to print equipmenet out of indigenous materials --And about medical doctors being able to print equipment in remote locations without having to warehouse every tool they might need.  It's an exciting time.

JimT@Future-Product-Innovations
User Rank
Blogger
Re: Consider the process -- not the parts
JimT@Future-Product-Innovations   4/19/2013 2:51:27 PM
NO RATINGS
Much of what we are all agreeing on, is easy to agree on – because we all see the reality, Today.  On the other hand, market forecasts 20 years into the future are a lot tougher to get accurate.

"Plastics Engineer" described the economic viability of 3DP & AM, when small quantities are required.  AGREED - Perfect application.  "78RPM" describes quick fabrication of long-obsoleted replacement parts.  AGREED -  Another perfect application.  ,,,And the theorizing about placing these "replicators" on other planets for space missions is absolutely fantastic.  It is truly exciting and encouraging to know that we currently possess the capabilities to do these things. 

While I embrace all of these realities of today and hopes of tomorrow, I struggle with accepting the forecasts offered by Lux in this report.  Maybe they're all spot-on; but maybe they're way-off-base. Lux makes the statement:  " ,,,3DP will become $1.9B by 2025,,,"   If forecasting, why not an even $2.0B-? Such forecasts are a lot harder for me to "swallow" than the pure technology capability.

Page 1/4  >  >>
Partner Zone
More Blogs from Engineering Materials
An MIT research team has invented what they see as a solution to the need for biodegradable 3D-printable materials made from something besides petroleum-based sources: a water-based robotic additive extrusion method that makes objects from biodegradable hydrogel composites.
Polish design firm NAS-DRA has proposed parasitic robotic drones that capture carbon dioxide from the air during the day and release it at night to plants growing on their wings.
Alcoa has unveiled a new manufacturing and materials technology for making aluminum sheet, aimed especially at automotive, industrial, and packaging applications. If all its claims are true, this is a major breakthrough, and may convince more automotive engineers to use aluminum.
NASA has just installed a giant robot to help in its research on composite aerospace materials, like those used for the Orion spacecraft. The agency wants to shave the time it takes to get composites through design, test, and manufacturing stages.
The European Space Agency (ESA) is working with architects Foster + Partners to test the possibility of using lunar regolith, or moon rocks, and 3D printing to make structures for use on the moon. A new video shows some cool animations of a hypothetical lunar mission that carries out this vision.
Design News Webinar Series
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service