HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Blog
Slideshow: Robots in Space
10/2/2012

Image 1 of 13      Next >

Justin is a humanoid robot being developed by the German Aerospace Center (DLR) for tasks that are too dangerous for humans, such as repairing orbiting satellites. Like humanoid robots designed for home use, humanoid space robots must be dexterous, mobile, and capable of carrying out tasks that require complex manipulation of tools and objects. They also need to be intelligent and have the ability to undertake manipulations that involve the use of both hands. Justin has compliant-controlled lightweight arms and four fingers on each of its two hands. It's remotely operated by a human, and its mobile platform allows it to operate autonomously at longer ranges. The platform has individually movable, spring-born wheels to match the robot's upper body movements during manipulation tasks. Also contributing to the robot's autonomy are photonic mixer device (PMD) sensors and cameras that allow it to make 3D reconstructions of its environment. Eventually, Justin will be mounted on its own satellite.   (Source: German Aerospace Center)
Justin is a humanoid robot being developed by the German Aerospace Center (DLR) for tasks that are too dangerous for humans, such as repairing orbiting satellites. Like humanoid robots designed for home use, humanoid space robots must be dexterous, mobile, and capable of carrying out tasks that require complex manipulation of tools and objects. They also need to be intelligent and have the ability to undertake manipulations that involve the use of both hands. Justin has compliant-controlled lightweight arms and four fingers on each of its two hands. It's remotely operated by a human, and its mobile platform allows it to operate autonomously at longer ranges. The platform has individually movable, spring-born wheels to match the robot's upper body movements during manipulation tasks. Also contributing to the robot's autonomy are photonic mixer device (PMD) sensors and cameras that allow it to make 3D reconstructions of its environment. Eventually, Justin will be mounted on its own satellite.
(Source: German Aerospace Center)

Image 1 of 13      Next >

Return to Article

View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 4/4
Rob Spiegel
User Rank
Blogger
Re: Cast of robot characters
Rob Spiegel   10/2/2012 11:10:41 AM
NO RATINGS
Great slideshow, Ann. Loved the fact that most of the robots were not humanoid. Yet another example of the wide range of robotic equipment.

naperlou
User Rank
Blogger
Re: Cast of robot characters
naperlou   10/2/2012 11:05:54 AM
NO RATINGS
Beth and Ann, that is a motley crew.  Actually the NASA robot looks a little like the bounty hunter from Star Wars, doesn't it?  I wonder that the Curiosity rover was not pictured.  It seems to be one of the most complex yet.

Beth Stackpole
User Rank
Blogger
Cast of robot characters
Beth Stackpole   10/2/2012 7:53:24 AM
NO RATINGS
Nice slide show, Ann. Certainly depicts the wide range of robots, some humanoid and some mimicking insects and animals, that are an on-going part of the space program. It's interesting that so much of what you see in this slide show that was once only the domain of government-backed space programs is now filtering down into more mainstream applications.

<<  <  Page 4/4
Partner Zone
More Blogs
From wearables to design changes to rumors of a car, Apple has multiple things cooking up in its kitchen. Here are six possibilities from Apple next week, with likely more than one coming to light.
The key to the success of alt energy is advanced automation, which is still relatively new to the energy scene.
New fastening and joining methods are making it possible to join multiple materials and thinner sheets in consumer and medical portable electronics, as well as automotive and aviation systems.
An upcoming Digi-Key Continuing Education Center class on designing motor control using MCUs and FPGAs will show you how to choose the best hardware and tools to speed up your development time.
It won't be too much longer and hardware design, as we used to know it, will be remembered alongside the slide rule and the Karnaugh map. You will need to move beyond those familiar bits and bytes into the new world of software centric design.
Design News Webinar Series
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Mar 9 - 13, Implementing Motor Control Designs with MCUs and FPGAs: An Introduction and Update
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service