HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Blog

Robots Learn to Pick Up Oddly-Shaped Objects

NO RATINGS
Page 1 / 2 Next >
View Comments: Newest First|Oldest First|Threaded View
Page 1/3  >  >>
Ann R. Thryft
User Rank
Blogger
Re: A Solution looking for a Problem
Ann R. Thryft   7/14/2014 11:50:48 AM
NO RATINGS
Cabe I never would have thought of that, either. Once again, this solution to a design problem seems obvious in hindsight, but unless one was spending a lot of time contemplating how to use different shapes to grasp objects, it's unlikely the idea would occur.

Cabe Atwell
User Rank
Blogger
Re: A Solution looking for a Problem
Cabe Atwell   5/16/2014 5:02:16 PM
NO RATINGS
The robot design is ingenious, I would have never thought a deflating 'ball' would be a great mechanism to grasp objects.

kenish
User Rank
Platinum
Re: A Solution looking for a Problem
kenish   6/4/2012 11:57:51 PM
NO RATINGS
Agree....Most of the comments are based on environments where uniform parts are pre-aligned.  Many times that's fine, but what if electronic components, gears, etc. could be "loose" and gripped and oriented by more sophisticated robotics?  It could result in net savings.  Another application is when the component shapes or orientation are irregular and poorly defined- logs, chicken wings, gemstones, or debris on the seabed.

Ann R. Thryft
User Rank
Blogger
Re: A Solution looking for a Problem
Ann R. Thryft   6/4/2012 4:16:06 PM
NO RATINGS
Jack, that's a good point about the use case of slight changes in the expected location of the object to be picked up. The main advantage the researchers cited was in adapting to different shaped and oddly shaped objects and being able to pick them up without dropping them (or spilling water from them as shown in the photo).

Jack Rupert, PE
User Rank
Platinum
Re: A Solution looking for a Problem
Jack Rupert, PE   6/3/2012 5:16:18 PM
NO RATINGS
Yes, Ann, the adaptation to different shapes is the key component of the algorithm.  I see two practical applications for something like that.  First, it gives the robot a much higher margin of error when moving a product.  If the product is not quite in the right orientation or has moved somewhat from where it it expected, the gripper can still get it (within reason).  The second application is if the product the robot is trying to grab gets redesigned.  A minor modification to it physical shape may not require as drastic of changes to the processes if the robot is still able to adapt to it.

Ann R. Thryft
User Rank
Blogger
Re: Odd Shaped Objects
Ann R. Thryft   5/31/2012 12:06:10 PM
NO RATINGS
Thanks, Al. I enjoy reporting on R&D developments as well as already baked products and technologies. The R&D can stimulate all kinds of ideas.

apresher
User Rank
Blogger
Odd Shaped Objects
apresher   5/30/2012 3:34:38 PM
NO RATINGS
Ann, Good story.  These kinds of developments are important to continuing innovation.  Nothing like new ideas to keep things moving ahead. Maybe this can spur specific application developments.  Thanks.

Ann R. Thryft
User Rank
Blogger
Re: A Solution looking for a Problem
Ann R. Thryft   5/30/2012 1:07:53 PM
NO RATINGS
jmiller, you can see and hear about the inner workings of the gripper's ball--what makes it a jamming gripper--in the video linked to in the article.
The fact that the robot has to follow the same repetitive steps is secondary here: it's the fact that it may have to adjust those repetitive steps to different shaped objects, as stated in the article. That's what the algorithm teaches it to adapt to.

Ann R. Thryft
User Rank
Blogger
Re: A Solution looking for a Problem
Ann R. Thryft   5/30/2012 1:06:00 PM
NO RATINGS
This gripper--which is not the main subject of the DN article--is not designed to pick and place small chips or other tiny objects on a high-speed line. The universal jamming gripper is a very different gripper designed to quickly grasp and release, or throw, a wide variety of object shapes. According to a FAQ
http://creativemachines.cornell.edu/jamming_faq_2
for an earlier IEEE article about this gripper by its inventors, not the algorithm which my article focused on, specific applications include "military robotics and improvised explosive device (IED) defeat missions; consumer and service robotics in unstructured environments like the home; and industrial and manufacturing robotics able to perform of a wider variety of gripping tasks than currently possible." According to that article, universal grippers can be used for sorting and throwing objects. One immediate use that comes to mind is end-of-line palletizing for non-fragile objects. A different (non-jamming) approach to universal grippers is shown here:
http://blog.robotiq.com/bid/29474/Universal-Gripper-Tooling-for-Pre-Engineered-Robotic-Cells

ChasChas
User Rank
Platinum
Hand
ChasChas   5/30/2012 12:26:57 PM
 

The human hand seems to be the model to mimic, but we still use tools - specialty grippers if you will. A totally universal gripper isn't there in nature either.

Logic is key. We can manipulate something a stick if needed, but of course much easier with the hand.

Page 1/3  >  >>
Partner Zone
More Blogs
Get a load of these strange product designs. What's in the water these design engineers are drinking?
The Dutch are known for their love of bicycling, and they’ve also long been early adopters of green-energy and smart-city technologies. So it seems fitting that a town in which painter Vincent van Gogh once lived has given him a very Dutch-like tribute -- a bike path lit by a special smart paint in the style of the artist's “Starry Night” painting.
Ever wanted your own giant robot? Three engineers did, and now they want to make 15-ft, fighting MegaBots a household name.
Here are 10 examples of the wide range of new technology on display at Pack Expo in Chicago earlier this month.
For decades, engineers have worked to combat erosion by developing high-strength alloys, composites, and surface coatings. However, in a new paper, a team at Jilin University in China turned to one of the most deadly animals in the world for inspiration -- the yellow fat-backed scorpion.
Design News Webinar Series
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Dec 1 - 5, An Introduction to Embedded Software Architecture and Design
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Littelfuse
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service