HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Guest Blogs
Design Decisions: Choosing the Right Connector
1/15/2013

Image 1 of 3      Next >

Table A
Table A

Image 1 of 3      Next >

Return to Article

View Comments: Newest First|Oldest First|Threaded View
anelinamartin
User Rank
Silver
Connector is the base
anelinamartin   7/5/2013 3:13:40 AM
NO RATINGS
Connector is the base of any electronic product. Without maintaining a good connector set you can't gaurantee a good product. You are alos good in your work i like that information you just shared it. Like if you are buying a vacuum cleaner you will definately wants a best one same with connector set

Scott Orlosky
User Rank
Platinum
Re: An Important Decision
Scott Orlosky   1/26/2013 11:25:07 PM
NO RATINGS
I have to agree.  Having spent over 15 years providing technical support for products in industrial environments, connection issues were by far the most prevalent.  This is not the area to take shortcuts.  Connector design, fabrication, backshell, wire gage and level of sealing are all important to get right.

William K.
User Rank
Platinum
Re: Design decisions: Crimp versus Solder
William K.   1/18/2013 5:26:08 PM
NO RATINGS
A poorly soldered connection to a wire is certainly a potential for failure, far moreso if there is not a good degree of strain relief. My experience with soldering is that if it is done right, the solder does not wick up the strands more than the conductor diameter. Greater wicking indicates that too much heat was applied to the connection and to the wire. But the most important part is indeed the strain relief that prevents flexing at the connector pin. No question about that.

tekochip
User Rank
Platinum
An Important Decision
tekochip   1/18/2013 10:42:30 AM
NO RATINGS
For my early years in the industry I ran the Service Department for an agricultural equipment manufacturer.  The environment was hostile, to say the least, but I quickly found that nearly all of the failures were switches, potentiometers and connectors.  Semiconductors rarely failed, but anything electromechanical was bound to be damaged by vibration or user input.  Not only were connectors an issue, but providing strain relief on cables without damaging the cable under vibration was an issue too.  Connectors became such a problem that we decided to do without them at one point and used terminal strips.  This wasn't an installation friendly approach, of course, but it did solve the problem.
 
When I played in a band connectors were always the first component to fail, too.  Smoking was still legal in Chicago Blues clubs back then, and a layer of brown goo accumulated on all connectors.  Switched 1/4" connectors were the worst with the switch contacts quickly failing with a layer of cigarette goop.  Line Out and Insert connectors typically had this type of connector, so the quick stage fix was always to shove a loop back cable in the offending channel and see if this fixed the problem.
 
I also found that MTA connectors used as interconnects would fracture solder joints on circuit boards during thermal cycling.  This happened quite a few times on newer Fender amps (why many musicians favor point to point wiring).  The solder will expand and contract at much greater rates than the steel pins in the connector during thermal cycling and eventually the solder joint fractures around the connector pins.  Later when I worked at an appliance controls company the same thing was happening to our oven controls and my stage experience paid off in finding a solution.


ttemple
User Rank
Platinum
Re: Design decisions: Crimp versus Solder
ttemple   1/18/2013 7:33:02 AM
NO RATINGS
I think for the average assembler the crimp connections are much more reliable.  They probably don't need replaced as often.  Also, what is the most common failure mode in a soldered pin connection?  I would guess that wire breakage where the solder wicked up into the wire.  If so, the wire would have to be shortened in that case too.

I favor crimp connections.

William K.
User Rank
Platinum
Design decisions: Crimp versus Solder
William K.   1/17/2013 8:16:35 PM
NO RATINGS
How in the world is a crimp on pin connector field repairable? REplacing a damaged pin would require cutting of the crimped on pin, making that wire in the cable too short to use. When I was an application/support engineer I would solder the crimp pins on for those 28 and 36 pin MS connectors with the individually inserted pins. The result was that I could replace a damaged pin in just a few minutes instead of needing to fight with stores for 2 hours to get a replacement cable assembly.

It is certainly true that connector choice can break a product and render it totally user unfriendly.

Cabe Atwell
User Rank
Blogger
Re: IP ratings do not reflect reality very well
Cabe Atwell   1/17/2013 3:33:15 PM
NO RATINGS
As I design CNC machinery, I just want a connector that is already attached to the type of wire I need. So, I end up looking over countless catalogs for the perfect option. Often I end up having to build the harness myself. I am truly tired of doing that. All I need is a DB9 with 18 awg wire, shielded, twisted pair, 6 feet long. Is that so hard to manufacture?

Anyway, price is also a concern. With proprietary connectors, you often end up stuck with one vendor.

This is why wireless is the way to go.

C

TJ McDermott
User Rank
Blogger
IP ratings do not reflect reality very well
TJ McDermott   1/15/2013 12:04:32 PM
NO RATINGS
I've encountered numerous failures of the large rectangular modular connectors offered by LappUSA, Weidmuller, Harting to name a few that do not stand up to real use.  This year I've personally witnessed four different incidents where the connectors permitted water to enter.

Going to higher ratings than are strictly necessary is sometimes necessary to get the protection desired.

IP69K is a high pressure high temperature environment that better represents industrial food processors.  IP67 sensors were simply not holding up.

Partner Zone
More Blogs from Guest Blogs
Igus retrofitted a car with 56 of its plastic iglide bearings to celebrate the brand's 30th anniversary. The car is currently being driven across the US and Canada.
The first and most obvious lesson of the following story is to remember to consider creep, along with all other potential failure modes.
Medical devices will look and feel different in the next 20 years, because, as design and product development people, our criteria are changing.
The properties of stainless steel make it well suited for a wide range of applications, but many of the things engineers think they know about stainless steel aren’t true.
It seems that gears have been around forever -- what could be new?
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Aug 18 - 22, Embedded Software Development With Python & the Raspberry Pi
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service