HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Guest Blogs

Optically Isolated Relays Can Handle Industrial Systems, Too

NO RATINGS
View Comments: Newest First|Oldest First|Threaded View
mrdon
User Rank
Gold
Re: Go solid state
mrdon   11/3/2012 11:09:23 PM
NO RATINGS
akwaman, Nicely explained, I agree totally with all the points you've made. I wanted to use SSRs(solid state relays) in wireless Hunter Fan Ceiling Controls but management was against it because of cost. As you discussed in your post, yes the intial cost investment is somewhat pricey but the ROI would have been substantial in terms of reduced customer warranty claims due to failing electromechanical relays. I'm definitely will be sharing this article with my Control Systems class at ITT Tech.

akwaman
User Rank
Gold
Re: Go solid state
akwaman   11/2/2012 10:21:32 AM
NO RATINGS
 I couldn't agree with you more, naperlou. Solid state is the way to go whenever is makes sense, as far as I'm concerned. In noise sensitive data aquisition matters, electromechanical relays can introduce unwanted noise into a system.  These kinds of optical relay technology has many uses.  Of course the obious power savings is a plus as is the reliability factor.

naperlou
User Rank
Blogger
Go solid state
naperlou   11/1/2012 11:57:31 AM
NO RATINGS
Whenever a solid state component is available it will generally be superior to an electromechanical one in most modern applications.  I ran into this years ago with amplifiers for communications for satellites.  Typically klystron tubes were used.  Advances in solid state amplifiers allowed the replacement of these in many cases.  They were more reliable, lighter and used less power.  I see the same thing with this class of relay.  They also, as is pointed out, avoid some of the pitfalls of electromechanical relays.  There was an article in Design News about a problem with such a relay recently. 

Partner Zone
More Blogs from Guest Blogs
We Have FPGAs with On-chip MCUs, but How About MCUs with On-chip FPGAs?
Programmable logic has come a long way from the simple devices we started out with. Remember Programmable Array Logic, or PALs? But where will we be in the next five to 10 years?
As industrial applications increasingly use process control systems utilizing sensor feedbacks to monitor various operating parameters, energy sources and consumption are becoming major factors of a system.
By asking more in-depth questions and providing customers with richer design data, distribution salespeople can quickly build credibility and help customers to avoid potential problems when they specify high-performance plastics.
Recent enhancements in rechargeable and primary (non-rechargeable) battery technologies enable industrial devices to perform beyond the limitations of legacy consumer batteries.
Design News Webinar Series
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Jan 12 - 16, Programmable Logic - How do they do that?
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service