HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Blogs
Guest Blogs

Optically Isolated Relays Can Handle Industrial Systems, Too

NO RATINGS
View Comments: Oldest First|Newest First|Threaded View
naperlou
User Rank
Blogger
Go solid state
naperlou   11/1/2012 11:57:31 AM
NO RATINGS
Whenever a solid state component is available it will generally be superior to an electromechanical one in most modern applications.  I ran into this years ago with amplifiers for communications for satellites.  Typically klystron tubes were used.  Advances in solid state amplifiers allowed the replacement of these in many cases.  They were more reliable, lighter and used less power.  I see the same thing with this class of relay.  They also, as is pointed out, avoid some of the pitfalls of electromechanical relays.  There was an article in Design News about a problem with such a relay recently. 

akwaman
User Rank
Gold
Re: Go solid state
akwaman   11/2/2012 10:21:32 AM
NO RATINGS
 I couldn't agree with you more, naperlou. Solid state is the way to go whenever is makes sense, as far as I'm concerned. In noise sensitive data aquisition matters, electromechanical relays can introduce unwanted noise into a system.  These kinds of optical relay technology has many uses.  Of course the obious power savings is a plus as is the reliability factor.

mrdon
User Rank
Gold
Re: Go solid state
mrdon   11/3/2012 11:09:23 PM
NO RATINGS
akwaman, Nicely explained, I agree totally with all the points you've made. I wanted to use SSRs(solid state relays) in wireless Hunter Fan Ceiling Controls but management was against it because of cost. As you discussed in your post, yes the intial cost investment is somewhat pricey but the ROI would have been substantial in terms of reduced customer warranty claims due to failing electromechanical relays. I'm definitely will be sharing this article with my Control Systems class at ITT Tech.

Partner Zone
More Blogs from Guest Blogs
Iterative design — the cycle of prototyping, testing, analyzing, and refining a product — existed long before additive manufacturing, but it has never been as efficient and approachable as it is today with 3D printing.
People usually think of a time constant as the time it takes a first order system to change 63% of the way to the steady state value in response to a step change in the input -- it’s basically a measure of the responsiveness of the system. This is true, but in reality, time constants are often not constant. They can change just like system gains change as the environment or the geometry of the system changes.
At its core, sound is a relatively simple natural phenomenon caused by pressure pulsations or vibrations propagating through various mediums in the world around us. Studies have shown that the complete absence of sound can drive a person insane, causing them to experience hallucinations. Likewise, loud and overwhelming sound can have the same effect. This especially holds true in manufacturing and plant environments where loud noises are the norm.
The tech industry is no stranger to crowdsourcing funding for new projects, and the team at element14 are no strangers to crowdsourcing ideas for new projects through its design competitions. But what about crowdsourcing new components?
It has been common wisdom of late that anything you needed to manufacture could be made more cost-effectively on foreign shores. Following World War II, the label “Made in Japan” was as ubiquitous as is the “Made in China” version today and often had very similar -- not always positive -- connotations. Along the way, Korea, Indonesia, Malaysia, and other Pacific-rim nations have each had their turn at being the preferred low-cost alternative to manufacturing here in the US.
Design News Webinar Series
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Dec 1 - 5, An Introduction to Embedded Software Architecture and Design
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Littelfuse
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service